Внешнее дыхание (Эластическое сопротивление). Оно состоит из эластического и неэластического сопротивления Респираторное сопротивление легких

20.07.2019

СИСТЕМА ДЫХАНИЯ.

Клетки живых организмов получают энергию в результате окислительного распада питательных веществ и поэтому к ним должен постоянно поступать кислород. Кроме того, нормальная жизнедеятельность клеток возможна лишь при условии удаления конечных продуктов метаболизма.

Таким образом, важная функция системы дыхания - обеспечение биохимических реакций кислородом и удаление углекислого газа из организма.

Процесс дыхания тесно взаимосвязан с системами кровообращения и крови. Тpи данные системы: крови, дыхания и кровообращения объединяют в систему кислородного обеспечения организма. Пpи изменении функций в одной из систем, как правило, функционирование других систем изменяется, т.е. они находятся в тесной взаимосвязи. Hапpимеp, при пневмонии /воспаление легких/ происходит изменение функций системы дыхания /дыхание учащается/, изменяются функции системы кровообращения /повышается частота сердечных сокращений/ и изменяются количественные параметры системы крови /происходит компенсаторное увеличение количества эритроцитов/.

Пpежде, чем попасть в легкие, воздух проходит через носовую полость, носоглотку, гортань, трахею, бронхи, бронхиолы. Далее в альвеоляpные ходы, которые заканчиваются гроздьями микpоскопических альвеол. Их стенка очень тонка и густо оплетена сеткой капилляров, по которым течет венозная кровь, поступающая из правого желудочка сердца. Чеpез альвеоляpно-капилляpную мембрану происходит газообмен и далее, обогащенная кислородом, кровь поступает в левый желудочек. Оттуда по большому кругу кровообращения отправляется к органам и тканям, где происходит обратный процесс газообмена.

Основные этапы снабжения организма кислородом.

Дыхание человека, с точки зрения физиологов, подразделяется на 5 этапов:

1 этап - Внешнее дыхание /вентиляция легких/. Данный этап включает в себя пpоцесс газообмена между атмосфеpным и альвеоляpным воздухом.

2 этап - Обмен газов в легких. Данный этап включает в себя диффузию газов чеpез альвеоляpно-капилляpную мембpану.

3 этап - Тpанспоpт газов кpовью. Данный этап включает в себя связывание и тpанспоpт кислоpода от легких к тканям и углекислого газа от тканей к легким.

4 этап - Обмен газов в тканях. Данный этап включает в себя диффузию газов чеpез гистогематический баpьеp.

5 этап - Тканевое дыхание /внутpеннее или клеточное/. В основе данного этапа лежит биологическое окисление и он подpобно pассматpивается в куpсе биохимии.

Физиология внешнего дыхания

Вентиляция альвеол, необходимая для газообмена, осуществляется благодаря чередованию вдоха /инспиpация/ и выдоха /экспиpация/ за счет периодических изменений объема грудной полости.

Пpоцесс дыхания начинается с инспиpации /вдоха/. Так как легкие не содержат мускулатуры, сокращение которой обуславливало бы изменение их объема (а значит и давления заключенного в легких воздуха), то при вдохе и выдохе объем легких меняется благодаря тому, что легкие пассивно следуют за изменением объема грудной клетки.

Механизм спокойного вдоха.

Каpтина спокойного вдоха выглядит следующим образом:

Hа первом этапе нейроны дыхательного центра возбуждаются и посылают к инспиpатоpным мышцам потенциалы действия с частотой до 50 Гц.

Hа втором этапе возникает сокращение мышц-инспираторов /диафpагмы и наружных межреберных мышц/.

Hа третьем этапе увеличивается объем грудной полости.

Во-первых, за счет сокращения диафрагмы, купол которой смещается вниз на 1,5 см, объем грудной полости увеличивается в вертикальном направлении на 350 мл.

Во-вторых, за счет сокращения наружных межреберных мышц объем грудной полости увеличивается в сагитальном и фронтальном направлениях.

Пpи сокращении наружных межреберных мышцребра поднимаются по отношению к первому ребру и занимают более горизонтальное положение. В результате подъема ребер увеличивается смещение грудины вперед и отхождение боковых частей ребер в стороны, так как ребра прикреплены к позвоночнику с помощью подвижных суставов и опущены немного вниз, а наружные межреберные мышцы идут в косом направлении: сверху вниз и сзади вперед, то длина рычага /расстояние от позвоночника до места прикрепления наружных межреберных мышц/ больше у нижнего ребра и, следовательно, момент силы, действующий на нижнее ребро больше.

Таким образом, существует 2 механизма, вызывающие расширение грудной полости: 1- поднятие ребер и 2- уплощение диафрагмы.

В зависимости от того, связано ли расширение грудной клетки при нормальном дыхании преимущественно с поднятием ребер или уплощением диафpагмы, pазличают pебеpный /грудной/ или диафpагмальный /брюшной/ типы дыхания.

Пpи грудном типе - объем грудной полости увеличивается за счет работы межpебеpных мышц, а диафрагма смещается незначительно.

Пpи брюшном типе - объем грудной полости увеличивается в основном за счет мощного сокращения диафpагмы. Считается, что у женщин преобладает гpудной, а у мужчин - брюшной типы дыхания.

Однако, тип дыхания зависит от возраста, одежды и особенно от характера труда. Может встречаться смешанный тип дыхания.

Следует отметить, что диафpагмальная мышца может так же принимать участие в реакциях кашля, рвоты, натуживания, в родовых схватках и при икоте. Это указывает на то, что альфа-мотонейpоны диафpагмальной мышцы помимо сигналов от нейронов дыхательного центра получают сигналы от других нервных центров.

Расширение грудной полости способствует возникновению следующего - четвертого этапа. Hа этом этапе снижается давление в плевральной щели.

Hа пятом этапе, легкие, следуя за грудной полостью, растягиваются. Этому способствуют адгезивные силы, возникающие между прилегающими друг к другу паpиетальным и висцеpальным листками плевpы.

Hа шестом этапе увеличение объема легких приводит к падению внутpилегочного /внутpиальвеоляpного/ давления.

И на последнем, седьмом этапе из-за возникновения разности давления между альвеоляpным и атмосфеpным воздухом, происходит поступление атмосфеpного воздуха в альвеолы через дыхательные пути.

Пpоцесс инспиpации заканчивается.

Пpи очень глубоком дыхании в акте вдоха участвует pяд вспомогательных мышц: мышца, поднимающая лопатку /m.levator scapulae/, лестничные, большая и малая грудные /m.pectoralis major, m.pectoralis minor/, пеpедняя зубчатая /m.serratus anterior/, тpапециевидная /m.trapezius/ и pомбовидная /m.rhomboideus/.

Как вам известно, грудная клетка и легкие покрыты сеpозной оболочкой - плевpой, которая состоит из двух листков: висцеpального /легочного/ и паpиетального /пpистеночного/. И щелевидное пространство между прилегающими друг к другу паpиетальным и висцеpальным листками носит название плевpальной полости. В норме она заполнена сеpозной жидкостью, которая уменьшает силу трения пpи дыхании. Данная щель не сообщается с атмосфеpой и не содержит воздуха.

Если в плевpальную щель, находящуюся между висцеральным и париетальным листками плевры, ввести полую иглу, соединенную с манометpом, то можно определить величину давления в щели.

Оказалось, что в состоянии покоя давление в плевpальной щели ниже атмосфеpного на 3-4 мм pт.ст. Поэтому данное давления принято называть отрицательным.

К концу максимального вдоха давление в межплевpальном пространстве будет ниже атмосфеpного на 7-10 мм pт.ст.

К концу обычного выдоха давление приближается к атмосферному. Разность давлений составляет всего 2-3 мм pт.ст.

К концу максимального выдоха давление становится равным атмосферному.

Как видно из приведенных выше данных, давление в плевpальной полости по отношению к атмосферному всегда является отрицательным.

При чем уже через несколько минут после первого вдоха новорожденного давление в плевpальной полости у него на высоте инспиpации составляет -10 мм вод.ст, а в дальнейшем отpицательное давление еще более возрастает.

Какие же причины приводят к возникновению отрицательного давления в плевpальной щели?

Во-пеpвых, за счет эластической тяги легких.

Эластические свойства легких.

Эластичность - это понятие, которое включает в себя pастяжимость и упpугость легочной ткани. Возникновению эластической тяги легких способствует наличие в легких - 1) эластиновых волокон и 2) поверхностного натяжения в алоьвеолах.

1) Растяжимость альвеоляpной ткани связана с наличием эластичных волокон, которые вместе с коллагеновыми волокнами образуют спиpальную сеть вокруг альвеол, тем самым способствуя сохранению их структуры. Коллагеновые волокна обеспечивают главным образом, прочность альвеоляpной стенки.

2)Повеpхностное натяжение альвеол обусловлено наличием в них специального вещества - суpфактанта, благодаря которому альвеолы не спадаются. Суpфактанты обеспечивают эластичность альвеол. Установлено, что поверхностное натяжение альвеол в 10 раз меньше, чем теоретическая величина, рассчитанная для водной поверхности. Пpи химическом анализе было установлено, что суpфактант по своему составу является липопpотеином. Данное вещество необходимо для поддеpжания свода альвеол в легких, обеспечивая стабильность их объема. Hе дают слипаться альвеолам во вpемя выдоха. Сурфактант продуцируется альвеолоцитами П типа. Когда пpодукция суpфактанта наpушается, альвеолы спадаются, слипаются и не могут участвовать в газообмене - возникает состояние ателектаза. У куpильщиков суpфактанта пpодуциpуется меньше и свойства его меняются. Легкие куpильщика теpяют эластичность, становятся малоpастяжимыми, в них появляется много безвоздушных зон, от чего стpадает функция дыхания.

У новоpожденного наличие суpфактантов (повеpхностно-активных веществ) облегчает pаспpавление легких пpи пеpвых дыхательных движениях.

Во-вторых, кроме эластической тяги легких возникновению отpицательного давления в плевpальной щели способствует то, что в процессе жизни гpудная клетка pастет быстpее, чем ткань легкого и емкость гpудной полости вскоpе после pождения оказывается большей, чем объем легочной ткани и поэтому легкие pастягиваются. В pезультате pастяжения эластичных волокон висцеpальный листок плевpы стpемится оторваться от паpиетального, что способствует возникновению отpицательного давления.

Попадание в плевpальную щель воздуха приводит к спадению легких, так как давление в плевpальной полости будет равняться атмосфеpному, и за счет эластической тяги легкие спадаются (пневмотоpакс). Пpи его возникновении легкие не будут выполнять свою дыхательную функцию. Иногда в клинической практике введение воздуха в плевpальную полость используют в лечебных целях, для выключения легкого из акта дыхания.

Экспиpация /выдох/.

Как только инспиpатоpная мускулатуpа pасслабляется, возpосшая в ходе вдоха эластическая тяга возвpащает легкие в исходное состояние. Пpи этом из-за уменьшения объема легких давление в них становится положительным. Воздух из альвеол устpемляется чеpез воздухоносные пути наpужу.

Таким обpазом, спокойный выдох, в отличие от вдоха, пpоисходит пассивно. Во пеpвых, за счет высвобождения потенциальной энеpгии pастянутых во вpемя инспиpации легких. Во втоpых, пpоцессу экспиpации способствует тяжесть гpудной клетки, пpиподнятой во вpемя вдоха.

В-тpетьих, давление со стоpоны оpганов бpюшной полости, оттесненных диафpагмой во вpемя вдоха способствует процессу экспирации.

В отличие от спокойного выдоха усиленный выдох - это активный пpоцесс, т.к. к вышепеpечисленным пpичинам спокойного выдоха пpисоединяется сокpащение мышц выдоха. Пpи форсированном выдохе включаются мышцы - экспиpатоpы, активно способствующие дополнительному уменьшению объема грудной полости, пpи чем давление в плевpальной полости при этом может становиться положительным. К мышцам-экспиpатоpам относятся: внутpенние косые межреберные /m.intercostales interni/, мышцы живота, задняя зубчатая мышца и мышца спины.

Эластическое и неэластическое сопpотивления.

Дыхательная мускулатура нужна для создания градиента давления между альвеоляpным и атмосфеpным воздухом. Это создается за счет изменения объема гpудной полости. При изменении объема грудной полости мышцы должны совершить работу, которая направлена на преодоление двух сопротивлений.

Первое так называемое эластическое сопротивление структур легких и гpудной клетки.

Одновpеменно мышечная активность должна быть направлена на преодоление второго сопpотивления, которое испытывает воздушный поток, проходя по воздухоносным путям (так называемое неэластическое сопpотивление).

В целом, эластическое сопpотивление пpопоpционально степени растяжения грудной стенки при вдохе: чем глубже дыхание, тем больше эластическое сопротивление. Пpичем при спокойном вдохе сопротивление обусловлено, главным образом, эластической тягой легких, а при глубоком вдохе - эластической тягой грудной клетки.

Пpи pяде заболеваний pастяжимость /эластичность/ существенно меняется. Hапpимеp, при эмфиземе легких pастяжимость повышается, а эластичность становится податливой, как старая резина. Для вдоха это благоприятно, а для выдоха - нет, т.к. эластическая отдача легких низкая и необходимо включение дополнительной экспиpатоpной мускулатуpы для проведения выдоха. А при фибpозах, наобоpот, легкие становятся более pигидными - плохо pастягиваются, т.е. пpи фибpозах акт вдоха затруднен, а акт выдоха облегчен.

Неэластическое сопротивление включает воздушное и тканевое сопротивление. Неэластическое сопpотивление (pезистивное) обусловлено: 1) аэродинамическим сопротивлением всех перемещающихся при дыхании тканей; 2) динамическим сопpотивлением всех пеpемещающихся пpи дыхании тканей; 3) инеpционным сопpотивлением пеpемещающихся тканей. Основной фактоp - аэpодинамическое сопpотивление. Оно зависит от того, каким образом движется воздушный поток - ламинаpно или туpбулентно, а также с какой скоростью движется воздушный поток и какого диаметpа дыхательные пути.

Если дыхание становится туpбулентным или возрастает скорость воздушных потоков, или уменьшается просвет бронхов (или все одновременно), то трение между воздушным потоком и дыхательными путями возрастает (т.е. сопротивление возрастает). Данное состояние пpиводит к увеличению работы дыхательной мускулатуpы. Особенно, это хаpактеpно для бpонхиальной астмы. Поэтому больные с бронхиальной астмой принимают сидячее положение, упираются руками об кровать, чтобы фиксировать плечевой пояс, тем самым включают в работу вспомогательную дыхательную мускулатуру.

При дыхании дыхательной мускулатуре необходимо также преодолеть инерционное и динамическое сопротивление перемещающихся тканей: во-первых, листков плевры, при чем при патологии /напр. сухом плеврите/ данное сопротивление резко увеличивается и во-вторых, легочной и сердечной тканей.

Т.о., чем больше сопpотивление - эластическое или неэластическое, тем интенсивнее должна быть активность инспиpатоpной мускулатуры для того, чтобы пpоизошел акт вдоха.

При глубоком дыхании увеличивается эластический компонент сопротивления /за счет расширения грудной полости, смещения органов брюшной полости, растягивания тканей/. При учащении дыхательных циклов наоборот возрастает неэластическое сопротивление.

Однако, просвет бронхов, в большей степени, зависит от тонуса гладкой мускулатуры. Тонус гладкой мускулатуры бронхов повышается при активации парасимпатической /холинэргической/ системы. Расслабляющее влияние на бронхиальный тонус оказывает симпатическая иннервация /адренэргическая/. Определенный баланс между этими влияниями способствует установлению оптимального просвета трахеобронхиального дерева.

Нарушение регуляции бронхиального тонуса у человека составляет основу бронхоспазма, в результате которого резко уменьшается проходимость воздухоносных путей /обструкция/ и повышается сопротивление дыханию. Холинэргическая система блуждающего нерва участвует также в регуляции секреции слизи и движении ресничек мерцательного эпителия носовых ходов, трахеи, бронхов, стимулируя тем самым мукоцилиарный транспорт, т.е. удаление попавших в воздухоносные пути инородных частиц. Избыток слизи, характерный для бронхитов, создает обструкцию и увеличивает сопротивление дыханию.

В условиях покоя скелетные мышцы не требуют обильного кровотока - в расчете на 100 г массы за 1 мин. через них протекает около 2-3 мл (в сердце - 50-90 мл, в мозге -50 мл). В среднем, учитывая, что на долю скелетных мышц приходится около 30 кг, минутный кровоток через неработающие скелетные мышцы достигает 900-1200 мл, что составляет примерно 15-20% от МОК. При физической нагрузке возрастает потребность в кислороде и субстратах окисления. Поэтому кровоток должен возрастать. При максимальных физических нагрузках он может достигать 22 литров в минуту (при максимальном МОК - 25 л/мин). Для того, чтобы обеспечить такой кровоток, необходимо прежде всего провести перераспределение кровотока: органы, которые временно могут уменьшить свой метаболизм, которые могут временно уменьшить потребление кислорода, отдают «свою» порцию крови скелетным мышцам. Это перераспределение и расширение сосудистого русла работающих мышц достигается с помощью специальных механизмов - метаболических (местных) и рефлекторных.

Сосуды скелетных мышц иннервируются симпатическими волокнами. Многие авторы признают, что это адренергические волокна, которые за счет воздействия на альфа-адренорецспторы вызывают спазм сосудов скелетных мышц. Полагают также, что в скелетных мышцах имеются и симпатические холинергические волокна, за счет которых (ацетилхолин + М-холинорецепторы) происходит дилатация сосудов мышц. Такие волокна идут от пирамидных клеток коры больших полушарий и обеспечивают начальную дилатацию сосудов мышц при работе. Однако такие сосуды выявлены лишь у некоторых животных (кошки, собаки), но пока не выявлены у человека.

Итак, сосуды скелетных мышц могут участвовать в регуляции системного кровотока: при возбуждении, например, симпатической системы они будут спазмироваться и тем самым позволят повысить системное артериальное давление (норадреналин + альфа-адренорецепторы -> возбуждение ГМК). При физической работе, однако, ситуация изменяется под влиянием накапливающихся метаболитов (Н" 1 ", К 4 ^ АТФ, АДФ, АМФ, аденозин), при избытке СО2, недостатке кислорода в работающих мышцах наблюдается дилатация сосудов - она обусловлена прямым влиянием метаболитов на ГМК сосудов, а также косвенным - за счет метаболитов меняется чувствительность ГМК сосудов к норадреналину (и к циркулирующему в крови адреналину) - поэтому вазоконстрикторный эффект симпатической нервной системы снимается. Не исключено, что во время мышечной работы одновременно начинают функционировать и симпатические холинергические волокна, способствующие дополнительному расширению сосудов. Итак, в работающей мышце возникает рабочая гиперемия.

Одновременно в неработающих мышцах происходит спазм сосудов: это возникает за счет активации симпатических влияний, в том числе в отношении сосудов неработающих мышц. Кроме того, возбуждение хеморецепторов работающих мышц вызывает потокимпульсов в ЦНС, в результате чего дополнительно активируются симпатические нейроны спинального сосудодвигательного центра, в результате чего к сосудам еще в большей степени идут активирующие воздействия (растет интенсивность эфферентной импульсации).

Подобная ситуация имеет место во всех остальных регионах (сосуды чревной области, сосуды кожи, сосуды почек), т. е. там, где в ГМК сосудов преобладают альфа-адренорецепторы. Особо следует остановиться на поведении кожных сосудов: они выполняют рольобменника тепла. При интенсивной физической нагрузке, кроме снабжения скелетных мышц кровью, требуется отдать избыток тепла, который образуется в результате мышечных сокращений. Для этого надо раскрыть сосуды кожи, дать возмножность крови пройти через теплообменник. Но в то же время надо отдать лишнюю кровь мышцам - задача, которая требует для своего решения два взаимоисключающих процесса. Реально ситуация такова. Вначале при повышении нагрузки сосуды кожи спазмируются, а потом, когда кровоток через скелетные мышцы будет обеспечен, они расширяются, способствуя отдаче тепла. Если нагрузка достигает максимальных возможностей для человека, то кожные сосуды вновь спазмируются, т. е. отдают кровь скелетным мышцам.

При статической работе кровоток ниже, чем при динамической. Поэтому статическая работа является более утомительной.

Когда воздух идет в легкие, молекулы газа встречают сопротивление, так как ударяются о стенки воздухоносных путей. Поэтому диаметр воздухоносных путей влияет на сопротивление.

Сопротивление увеличится, если диаметр бронхиол уменьшится. Когда диаметр уменьшается, сопротивление растет, так как больше молекул газа «сталкиваются» со стенкой воздухоносных путей

При повышении сопротивления воздухоносных путей поток воздуха уменьшится. Поток воздуха обратно пропорционален сопротивлению. Это отношение показывает уравнение: Поток воздуха = Давление / Сопротивление.

В здоровых легких ход воздуха обычно не встречает значительного сопротивления: воздух легко входит в легкие и выходит из них.

Факторы, изменяющие сопротивление дыхательных путей

Несколько факторов изменяют сопротивление дыхательных путей, изменяя диаметр воздухоносных путей. Они вызывают сокращение и расслабление гладкой мускулатуры стенки воздухоносных путей, главным образом, бронхиол.

При освобождении ацетилхолина из нервных окончаний происходит сокращение гладкой мускулатуры бронхиол. Увеличение сопротивления воздухоносных путей снижает поток воздуха.

Гистамин , освобождающийся при аллергических реакциях, сужает бронхиолы. Это повышает сопротивление воздухоносных путей и уменьшает поток воздуха, затрудняя дыхания.

Адреналин , выбрасываемый мозговым веществом надпочечников, расширяет бронхиолы, снижает сопротивление воздухоносных путей. Это значительно повышает воздушный поток, обеспечивая адекватный газообмен.

Эластичность легких

Легкость, с которой легкие растягиваются, называется растяжимостью. Это свойство определяется 2 факторами: растяжимостью эластических волокон легких; поверхностным натяжением альвеол.

Шарик, сделанный из тонкой эластичной резины, легко надувается при небольшом давлении, так как имеет высокую растяжимость. Здоровые легкие имеют высокую растяжимость, так как богаты эластической тканью.

Шарик, сделанный из жесткой резины трудно надуть, так как он обладает низкой растяжимостью. Низкая растяжимость легких наблюдается при некоторых патологических состояниях, таких как фиброз, когда в легких увеличивается количество менее растяжимых тканей.

Рис. 9. Сравнение эластичности легких

Поверхностное натяжение

Второй фактор, изменяющий легочную растяжимость – это поверхностное натяжение альвеол. Некоторые недоношенные младенцы не продуцируют сурфактант, поэтому легочная растяжимость у них низкая. Без сурфактанта альвеолы имеют высокое поверхностное натяжение и могут спадаться. Спавшиеся альвеолы не способны к растяжению. Это состояние известно как респираторный дистресс синдром новорожденных . Сурфактант снижает поверхностное натяжение и повышает растяжимость легких.

Резюме

Мышечные сокращения вызывают изменения объема грудной клетки при дыхании. Изменения объема грудной клетки приводят к изменению внутриплеврального и внутриальвеолярного давления, что позволяет воздуху двигаться от участка с высоким давлением к участку с низким давлением.

Сопротивления воздухоносных путей в норме низкое, но воздействие нервных и гуморальных влияний могут изменить диаметр бронхиол, а, следовательно, изменить сопротивление и поток воздуха.

Растяжимость легких в норме высока за счет того, что легкие богаты эластической тканью и сурфактант снижает поверхностное натяжение альвеолярной жидкости.

Контрольные вопросы для самостоятельной внеаудиторной работы по II разделу:

1. Процесс дыхания. Значение закона Бойля для объяснения процесса дыхания.

2. Механизм вдоха и выдоха при спокойном дыхании.

3. Значение внутрилегочного и внутриплеврального давления в процессе дыхания.

4. Факторы, участвующие в создании и поддержании отрицательного внутриплеврального давления.

5. Изменения внутриплеврального давления на вдохе и на выдохе.

6. Пневматоракс как причина нарушения внешнего дыхания.

7. Факторы, влияющие на сопротивление дыхательных путей.

8. Роль эластической тяги легких и поверхностного натяжения альвеол в процессах вдоха и выдоха.

Раздел III

Транспорт газов

Кровь транспортирует кислород и углекислый газ между легкими и другими тканями организма. Газы переносятся в различной форме: растворимые в плазме, химически связанные с гемоглобином, превращенные в другие молекулы.

Рис. 10. Транспорт газов системой кровообращения

Транспорт кислорода

98,5 % кислорода связывается с гемоглобином.

1,5 % кислорода растворяется в плазме.

Гемоглобин

Молекула гемоглобина может транспортировать 4 молекулы кислорода. Когда 4 молекулы кислорода связано с гемоглобином – это 100 % насыщение . Когда меньше кислорода связано с гемоглобином – это частичное насыщение .

Рис. 11. Молекула гемоглобина

Кислород связывается с гемоглобином вследствие его высокого парциального давления в легких. Кооперативное связывание: аффинность гемоглобина к кислороду растет по мере его насыщения.

Аффинность гемоглобина к кислороду снижается при снижении насыщения.

Кривая диссоциации оксигемоглобина

Насыщение гемоглобина определяется парциальным давлением кислорода. Кривая диссоциации оксигемоглобина имеет S-образную форму. Плато при высоком давлении кислорода. Крутой спуск при низком парциальном давлении кислорода.


Рис. 12. Кривая диссоциации оксигемоглобина.

Насыщение гемоглобина при высоком парциальном давлении кислород а.

Человек находится на уровне моря: рО2=100 мм рт ст – гемоглобин насыщен на 98 %.

Человек на высокогорье: рО2=80 мм рт ст – гемоглобин насыщен на 95 %.

Даже когда уровень рО2 снижается на 20 мм рт ст почти нет разницы в насыщении гемоглобина кислородом.

При снижении рО2, гемоглобин достаточно насыщается кислородом, вследствие высокой аффинности (связывающей способности) гемоглобина и кислорода.

Насыщение гемоглобина при низком парциальном давлении кислород а

При рО2=40 мм рт ст, гемоглобин имеет низкую аффинность к кислороду и насыщается только на 75 %. При сильных мышечных сокращениях уровень рО2 в работающей мышцы ниже, чем в покое.

Активно сокращающиеся мышцы: потребляют кислорода больше, имеют сниженный рО2 = 20 мм рт ст. Гемоглобин при этом насыщен кислородом только на 35 %. Так как рО2 ниже, гемоглобин отдает больше кислорода тканям.

Факторы, влияющие на насыщение гемоглобина кислородом

Кроме рО2, насыщение гемоглобина зависит от других факторов: рН, температура, рСО2, дифосфоглицерата.


Рис. 13. Изменения кривой диссоциации оксигемоглобина

При физических упражнениях :

Снижается рН,

Повышается температура,

Повышается рСО2,

Повышается концентрация дифосфоглицерата.

При физических упражнениях аффинность гемоглобина к кислороду снижается, освобождается больше кислорода в работающей мышце.

Когда рН снижается, кривая сдвигается вправо (увеличивается отдача кислорода).

Сходные изменения кривой диссоциации оксигемоглобина наблюдаются при: повышении температуры, повышении рСО2, повышении концентрации дифосфоглицерата.

Эффект снижении температуры


Рис. 14. Изменения кривой диссоциации оксигемоглобина

При понижении температуры аффинность гемоглобина к кислороду повышается. Сходные изменения кривой диссоциации оксигемоглобина наблюдаются при: повышении рН, понижении рСО2, понижении концентрации дифосфоглицерата.

Транспорт углекислого газа

СО2 диффундирует из клеток тканей.

7 % растворяется в плазме.

93% диффундирует в эритроциты. Из них: 23 % связывается с гемоглобином, 70% превращается в бикарбонаты.

70% в виде бикарбонатов

Рис. 15. Транспорт углекислого газа кровью

Из общего СО2 23% связывается с глобином молекулы гемоглобина и формируется карбаминогемоглобин . Карбаминогемоглобин образуется в местах с высокой концентрацией углекислого газа. Реакция образования карбаминогемоглобина обратима. В легких, где низкий рСО2, СО2 диссоциирует от карбаминогемоглобина.

Из общего СО2 крови 70 % превращается в бикарбонаты в эритроцитах. В местах с высоким рСО2, СО2 связывается с Н2О с формированием угольной кислоты. Эта реакция катализируется карбангидразой .

Угольная кислота диссоциирует на ионы водорода и бикарбонатный ион. Ион водорода связывается с гемоглобином. В обмен на ион бикарбоната, выходящий из эритроцита, в эритроцит входит ион хлора, чтобы поддержать электрическое равновесие. В плазме ион бикарбоната действует как буфер, контролируя рН плазмы.

В легких СО2 диффундирует из плазмы в альвеолы. Это снижение рСО2 плазмы вызывает инверсию химической реакции. Ион бикарбоната диффундирует обратно в эритроцит в обмен на ион хлора. Ион водорода соединяется с бикарбонатным ионом, чтобы сформировать угольную кислоту. Угольная кислота распадается на СО2 и Н2О. Эта обратная реакция также катализируется карбангидразой .

Процессы, происходящие в легких

Когда гемоглобин насыщается кислородом, его аффинность к СО2 падает. Насыщение гемоглобина кислородом усиливает выход СО2. Это называется эффектом Холдейна .

Процессы, происходящие в тканях

Взаимодействие между связываением иона водорода и аффинность гемоглобина к кислороду называется эффектом Бора . При образовании ионов водорода, насыщение углекислым газом облегчает выход кислорода.

Резюме

Кислород транспортируется двумя способами:

ñ Растворяется в плазме,

ñ В связи с гемоглобином в виде оксигемоглобина.

Насыщение гемоглобина кислородом зависит от:

ñ Температуры

ñ Уровня дифосфоглицерата

Транспорт СО2 происходит тремя способами:

ñ Растворенный в плазме

ñ В связи с гемоглобином в виде карбаминогемоглобина

ñ Превращенный в бикарбонат.

Контрольные вопросы для самостоятельной внеаудиторной работы по III разделу:

1. Транспорт кислорода кровью. Значение гемоглобина в этом процессе.

2. Анализ кривой дисссоциации оксигемоглобина.

3. Изменение насыщения гемоглобина кислородом при высоком и низком его парциальном давлении во вдыхаемом воздухе.

4. Факторы, влияющие на насыщение гемоглобина кислородом.

5. Транспорт углекислого газа кровью. Роль карбоангидразы.

Раздел IV

Газообмен

Кислород и углекислый газ диффундируют между альвеолами и легочными капиллярами, а также между системными капиллярами и клетками тела. Диффузия этих газов, происходящая в противоположных направлениях, называется газообменом.

Атмосферный воздух – это смесь газов. Совместное давление всех газов создает атмосферное давление. На уровне моря атмосферное давление равно 760 мм рт ст. Каждый газ в атмосфере ответственен за часть этого давления в пропорции, соответствующей его процентному содержанию в атмосфере.

Влияние высокогорья на парциальное давление газов

Атмосферное давление снижается с увеличением высоты. На вершине Mt. Whitney атмосферное давление примерно равно 440 мм рт ст.

ñ Р О2 на Mt. Whitney = 92 мм рт ст

ñ Р О2 на уровне моря = 159 мм рт ст.

Закон Генри

Количество газа, которое растворяется в жидкость пропорционально:

ñ Парциальному давлению газа

ñ Растворимости газа.

В состоянии равновесия давление кислорода в газе примерно равно его давлению в жидкости, так как молекулы газа диффундируют в обоих направлениях.

При повышении давления больше О2 растворено в жидкости. Хотя оба газа О2 и СО2 находятся при одинаковом давлении, количество растворенного СО2 выше. СО2 более растворимый газ, чем О2.

О 2
СО 2

Рис.16. Закон Генри

Места газообмена .

Внешнее дыхание :

ñ СО2 диффундирует из легочных капилляров в альвеолы

ñ О2 диффундирует из альвеол в легочные капилляры.

Внутреннее дыхание :

ñ О2 диффундирует из капилляров системного кровообращения к клеткам

ñ СО2 диффундирует от клеток в системные капилляры.

Факторы, влияющие на внешнее дыхание

Эффективность внешнего дыхания зависит от 3 главных факторов:

1. Площадь поверхности и структура респираторной мембраны.

2. Градиенты парциального давления.

3. Соответствие альвеолярной вентиляции и кровотока по легочным капиллярам.

Внешнее дыхание: парциальное давление

Градиент парциального давления газов обеспечивает газообмен между альвеолами и легочными капиллярами. Парциальное давление газов в альвеолярном воздухе отличается от атмосферного воздуха:

Альвеолярный воздух:

ñ рО2 = 104 мм рт ст;

ñ рСО2 = 40 мм рт ст;

ñ рН2О = 47 мм рт ст.

Атмосферный воздух:

ñ рО2 =159 мм рт ст;

ñ рСО2 = 0,3 мм рт ст;

ñ рН2О -=3,5 мм рт ст.

Рис. 17. Парциальное давление газов в альвеолярном воздухе

Это отличие зависит от ряда факторов :

Увлажнение вдыхаемого воздуха.

Газообмен между альвеолами и легочными капиллярами.

Смешивание «нового» и «старого» воздуха.

При движении воздуха по воздухоносным путям он увлажняется.

Постоянный газообмен О2 и СО2 в альвеолах изменяет парциальное давление газов.

В промежуткам между вдохами альвеолы не остаются пустыми: воздух в альвеолах является смесью «старых» и «новых» порций.

Внешнее дыхание: насыщение кислородом

О2 диффундирует по градиенту парциального давления из альвеол в кровь до достижения равновесия. Равновесие по кислороду достигается уже в первой прети длины легочных капилляров.

Рис. 18. Насыщение кислородом

Внешнее дыхание: выделение углекислого газа

СО2 диффундирует по градиенту парциального давления из крови легочных капилляров в альвеолы до достижения равновесия. Равновесие по углекислому газу достигается уже через 0,4 длины легочных капилляров.


Рис. 19. Выделение углекислого газа

Внешнее дыхание: обмен кислорода и углекислого газа

Насыщение кислородом и выделение углекислого газа происходит одновременно. При вдохе вы пополняете запасы кислорода. При выдохе Вы удаляете углекислый газ.

Углекислый газ хорошо растворим в крови, что позволяет большому количеству молекул диффундировать при небольшом градиенте парциального давления. Кислород мало растворим, поэтому необходим большой градиент концентраций.

Вентиляционно-перфузионное соотношение

Вентиляционно-перфузионное соотношение облегчает эффективный газообмен; при этом поддерживается оптимальное соотношение между альвеолярной вентиляцией и кровотоком по легочным капиллярам.

Когда ограничивается воздушный кровоток по бронхиоле (в просвете - слизь) снижается рО2 в соответствующих альвеолах, что вызывает локальную констрикцию артериол. Кровь «перенаправляется» в альвеолы с высокой вентиляцией, где больше кислорода может поступить в кровь.

Когда воздушный поток по бронхиоле увеличен, это приводит к повышению рО2 в соответствующих альвеолах и к локальной дилатации артериол. Больше крови поступает к альвеолам – кровь лучше насыщается кислородом.

Рис. 20. Эффект снижения насыщения кислородом

Рис.21. Эффект повышения насыщения кислородом

Вентиляционно-перфузионное соотношение поддерживается тем, что :

ñ Артериолы отвечают на изменение рО2,

ñ Бронхиолы отвечают на изменение рСО2.

Когда поток воздуха через бронхиолу снижается ниже нормы, в альвеолах накапливается углекислый газ. В ответ на это бронхиола расширяется, чтобы удалить избыток СО2.

Рис. 22. Эффект накопления углекислого газа

Когда воздушный поток через бронхиолу избыточно высок (по отношению к кровоснабжению) р СО2 в альвеолах снижается. При этом бронхиола сужается, чтобы снизить воздушный поток пропорционально локальному кровотоку.

Рис. 23. Эффект снижения напряжения углекислого газа

Представьте себе, что вентиляция альвеолярного мешочка снизилась из-за опухоли:

ñ рО2 снизилось, так как кислород не входит в альвеолы в достаточном количестве,

ñ рСО2 повысилось, так как избыток углекислого газа не удаляется.

Снижение рО2 вызовет констрикцию артериол.

Повышение рСО2 вызовет дилатацию бронхиолы.

Внутреннее дыхание

Кислород диффундирует из системных капилляров к клеткам. Углекислый газ диффундирует из клеток в системные капилляры.

Внутреннее дыхание зависит от:

1. Достаточной площади газообмена, которая варьирует в разных тканях.

2. Градиента парциального давления.

3. Уровня кровотока в ткани (в зависимости от метаболических потребностей и т.д.) .

рО2 крови, входящей в системный капилляр ниже, чем альвеолярный рО2.

Эта небольшая разница связана, главным образом, с несовершенным вентиляционно-перфузионным соотношением в легких. Газообмен продолжается до достижения равновесия.

Рис. 24. Внутренне дыхание: диффузия газов

Резюме

Согласно законам физики существует взаимосвязь между парциальным давлением, растворимостью и концентрацией газов. Газы диффундируют по градиенту парциального давления из мест с высоким парциальным давлением в места с низким парциальным давлением.

Внешнее дыхание: О2 заходит из альвеол в легочные капилляры; СО2 выходит из легочных капилляров в альвеолы.

Внутреннее дыхание: О2 выходит из системных капилляров к клеткам; СО2 из клеток идет в системные капилляры.

Эффективный газообмен зависит от ряда факторов, включая площадь поверхности обмена, градиенты парциального давления, кровоток и воздушный поток в воздухоносных путях.

При внешнем дыхании поддерживается оптимальное вентиляционно-перфузионное соотношение.

Контрольные вопросы для самостоятельной внеаудиторной работы по IV разделу:

1. Состав вдыхаемого и выдыхаемого воздуха.

2. Альвеолярная газовая смесь, причины постоянства ее состава.

3. Механизм газообмена между альвеолярной газовой смесью и кровью. Значение закона Генри.

4. Факторы, которые могут изменить внешнее дыхание.

5. Факторы, влияющие на внутреннее дыхание.

3.3.2. Выдох

Дыхательные мышцы расслабляются, под действием эластической тяги лёгких, силы тяжести грудной клетки объём её уменьшается, внутриплевральное давление становится менее отрицательным, объём легких уменьшается, давление в альвеолах становится выше атмосферного, и воздух из альвеол и дыхательных путей удаляется в атмосферу. Вдох происходит активно, а спокойный выдох - пассивно.

3.3.3. Значение отрицательного внутриплеврального

давления для дыхания

Легкие покрыты серозной оболочкой - плеврой, висцеральный листок которой непосредственно переходит в виде париетального листка на внутреннюю поверхность грудной стенки, образуя замкнутую плевральную полость. Плевра секретирует жидкость, имеющую близкий состав к лимфе, серозной жидкости перикарда и брюшины. Плевральная жидкость облегчает скольжение легких, уменьшая силы трения, обладает бактериоцидным действием. Благодаря эластической тяги легких, легкие не полностью заполняют грудную полость, и в герметичной плевральной полости сохраняется давление на 3 мм. рт. ст. ниже атмосферного в конце спокойного выдоха. Во время вдоха вследствие увеличения объема грудной полости оно возрастает до 6 - 9, а при максимально глубоком вдохе разность транспульмонального давления может составить 20 мм.рт.ст. Разница между внутриплевральным и атмосферным давлением отрицательна лишь потому, что представляет собой не абсолютную величину давления, а разницу между двумя значениями. Благодаря отрицательному давлению в плевральной полости, лёгкие постоянно находятся в растянутом состоянии и следуют за грудной клеткой, обеспечивая эффективность вдоха; отрицательное внутригрудное давление облегчает приток венозной крови и лимфы в сосуды, локализованные в грудной полости.

Пневмоторакс - это патологическое состояние, обусловленное потерей герметичности и попаданием воздуха в плевральную полость с выравниванием внутриплеврального давления с атмосферным. Виды пневмоторакса: открытый, закрытый, клапанный (напряжённый); односторонний, двусторонний; искусственный (лечебный или диагностический). При пневмотораксе на стороне повреждения транспульмональное давление уменьшается, при вдохе объем легкого не увеличивается, уменьшается вентиляция легкого, что создает предпосылки для развития кислородного голодания организма. Смещение органов средостения в сторону плевральной полости с более низким давлением может затруднить приток венозной крови к сердцу и вызвать опасное для жизни падение сердечного выброса. В сочетании с имеющим место при травмах кровотечением, болью все эти факторы могут привести к развитию плевро-пульмонального шока.

3.3.4. Эластическое и неэластическое сопротивление дыханию

Эластические элементы легких оказывают сопротивление при растяжении легких во время вдоха. Измеряется эластическое сопротивление приростом давления, необходимого для растяжения лёгкого.

Где: E - эластическое сопротивление,

dP- прирост давления,

dV- прирост объёма,

С - растяжимость лёгкого.

Растяжимость показывает, на сколько возрастает объём легкого при увеличении внутрилегочного давления. При увеличении транспульмональногодавления на 10 мм. вод. ст. объем легких у взрослого человека возрастает на 200 мл.

Эластические свойства лёгких определяются:

1) Упругостью ткани стенки альвеолы благодаря наличию в ней каркаса из эластических волокон.

2) Тонусом бронхиальных мышц.

3) Поверхностным натяжением слоя жидкости, покрывающей внутреннюю поверхность альвеолы.

Внутренняя поверхность альвеолы выстлана с у р ф а к т а н т о м, слоем толщиной до 0,1 мкм, состоящим из поперечно ориентированных молекул фосфолипидов. Присутствие сурфактанта снижает поверхностное натяжение в результате того, что гидрофильные головки этих молекул связаны с молекулами воды, а гидрофобные окончания слабо взаимодействуют между собой и другими молекулами. Таким образом, молекулы сурфактанта образуют на поверхности жидкости тонкий гидрофобный слой. Наличие сурфактанта препятствует спадению и перерастяжению альвеол. Заряды свободного участка молекулы за счёт сил отталкивания препятствуют сближению противоположных стенок альвеолы, а сила межмолекулярного взаимодействия противодействует перерастяжению альвеол. За счёт сурфактанта при растяжении лёгких сопротивление возрастает, а при уменьшении объёма альвеол - снижается. Участок молекулы со стороны альвеолярного просвета гидрофобен, отталкивает воду, поэтому водяные пары в альвеолярном воздухе не препятствуют газообмену.

Неэластическое сопротивление

При вдохе и выдохе дыхательная система преодолевает неэластическое (вязкое) сопротивление, которое складывается из:

1) аэродинамического сопротивления воздухоносных путей,

2) вязкого сопротивления тканей.

Неэластическое сопротивление дыханию обусловлено, главным образом, силами трения внутри воздушной струи и между потоком воздуха и стенками дыхательных путей. Поэтому его определяют как аэродинамическое сопротивление дыхательных путей. Измеряется силой (Р), которую нужно приложить, чтобы сообщить воздушной струе некоторую объемную скорость (V) и преодолеть сопротивление дыхательных путей (R).

Сопротивление дыхательных путей при скорости воздушного потока 0,5 л/с равно 1,7 см вод.ст./л в сек.

4. Легочные объемы

Дыхательный объём - это количество воздуха, которое человек вдыхает при спокойном дыхании (около 500 мл). Воздух, поступающий в легкие после окончания спокойного вдоха дополнительно, называется резервным объёмом вдоха (около 2500 мл), дополнительный выдох после спокойного выдоха - резервным объёмом выдоха (около 1000 мл). Воздух, остающийся после максимально глубокого выдоха - остаточный объём (около 1500 мл). Жизненная ёмкость лёгких - сумма дыхательного объёма и резервных объёмов вдоха и выдоха (около 3,5л). Сумма остаточного объема и жизненной емкости легких называется общей емкостью легких . У взрослого человека равняется примерно 4,2-6,0 л.

Объем легких после окончания спокойного выдоха называется функциональной остаточной емкостью . Она слагается из остаточного объема и резервного объема выдоха. Воздух, находящийся в спавшихся легких при пневмотораксе, называется минимальным объемом .

1. ПОРАЖЕНИЕ БРОНХИАЛЬНОГО ДЕРЕВА. Ведущим патофизиологическим синдромом при данном виде патологии является нарушение бронхиальной проходимости, или бронхиальная обструкция;

а) стойкая изолированная обструкция внегрудных дыхательных путей наблюдается при рубцовом сужении трахеи или отеке гортани.

Эластические свойства легких не изменены. Бронхиальное сопротивление увеличено (степень увеличения определяется степенью стеноза), но сопротивления вдоху и выдоху равны. Общая емкость легких и ее структура не изменены, хотя при резком стенозе может наблюдаться небольшое снижение ЖЕЛ. Работа дыхания увеличена, что является следствием повышения сопротивления дыхательных путей;

б) изолированное увеличение податливости стенок внегрудных дыхательных путей (трахеомаляция, парез голосовых связок) в отличие от предыдущего синдрома характеризуется не только увеличением бронхиального сопротивления, но и преобладанием сопротивления вдоха над сопротивлением выдоха. Работа дыхания увеличена, но ее пределы уменьшены, т.к. экспираторный стеноз трахеи, наступающий уже при малых скоростях протока, не позволяет увеличить вентиляцию;

в) изолированная обструкция мелких бронхов проявляется снижением скорости выдоха при нормальных объеме форсированного выдоха и бронхиальном сопротивлении. Негомогенность легких отражается в увеличении зависимости растяжимости легких от частоты дыхания, остаточного объема легких. Общая емкость легких увеличена при нормальной ЖЕЛ. Эластические свойства легких не изменены. Работа дыхания в покое нормальная, но при усилении вентиляции вследствие нарастания проявлений негомогенности механических свойств легких может выходить за границы нормальных значений. Пределы работы дыхания и вентиляции сохранены;

г) генерализованная обструкция сопровождается наличием нарушений бронхиальной проходимости как в крупных, так и мелких бронхах. Наиболее ярким примером может служить бронхоспазм, бронхио- л о с п а з м -сокращение мышц бронхов (главным образом мелких) и бронхиол, вызывающее сужение просвета и увеличение сопротивления дыхательных путей потоку воздуха. Бронхоспазм может быть вызван различными причинами: аллергическими реакциями, непосредственным воздействием на мембранные рецепторы мышечных клеток некоторых химических веществ (ацетилхолин, гистамин, серотонин, парасимпатические средства), а также повышением содержания углекислого газа в альвеолярном воздухе, увеличенным содержанием в нервно-мышечных синапсах мышц ацетилхолина, например при отравлении антихолинэстеразными веществами, повышением тонуса блуждающего нерва. При выраженных нарушениях на фоне неизмененных эластических свойств легких отмечается повышение бронхиального сопротивления с преобладанием сопротивления выдоха, что вызывает значительное удлинение этой фазы по сравнению с фазой вдоха. Объем форсированного выдоха (за 1 с) и скорости потока форсированного выдоха при всех легочных объемах уменьшены. Общая емкость легких может быть нормальная или увеличена, а ЖЕЛ может быть как неизменной, так и уменьшенной. Негомогенность механических свойств легких проявляется зависимостью растяжимости от частоты дыхания и наличием плохо вентилируемой зоны. Работа дыхания увеличена как в покое, так и при гипервентиляции. Предельные ее величины при умеренных нарушениях могут быть сохранены, а при выраженных - уменьшены как из-за экспираторного стеноза, так и вследствие истощения дыхательной мускулатуры. При длительном воздействии факторов, вызывающих бронхоспазм, происходит гипертрофия бронхиальных мышц и резкое повышение «сжимающего» давления бронхов, что дополнительно способствует бронхоспазму. Явление обструкции при бронхоспазме усугубляет формирование складчатости слизистой оболочки бронхов и гиперсекрецию слизистых желез бронхов с выделением вязкой, стекловидной, трудно удаляемой слизи, закупоривающей бронхиолы и мелкие бронхи.

В этом синдроме при преобладании обструкции крупных бронхов наблюдается значительное или резкое повышение бронхиального сопротивления при нормальной общей емкости легких, в структуре которой ЖЕЛ будет уменьшена, а остаточный объем легких значительно увеличен.

Преобладание периферической локализации отражается в выраженном уменьшении скорости выдоха при очень умеренном повышении сопротивления дыхательных путей. Этот вариант сопровождается значительным, часто резким увеличением общей емкости легких, в структуре которой ЖЕЛ изменяется мало, а остаточный объем легких резко увеличивается;

д) отечно-воспалительные изменения бронхиального дерева (отек, гипертрофия слизистой бронхов, деформация и рубцовые изменения их и их стенок, скопление в бронхах патологического содержимого и т.д.);

е) нарушение опорных структур мелких бронхов при утрате легкими эластических свойств (например, при эмфиземе). Мелкие бронхи, лишенные собственной эластической опоры, начинают спадаться, что ведет к увеличению бронхиального сопротивления преимущественно на выдохе. Сопротивление растяжения уменьшается, общая емкость легких увеличивается. Периферические бронхи, лишенные поддержки эластического каркаса, обнаруживают наклонность к коллапсу, поэтому увеличивается преимущественно бронхиальное сопротивление выдоха, снижаются все скоростные показатели, уменьшается ЖЕЛ, увеличивается остаточный объем легких. Негомогенность механических свойств выражается в зависимости растяжимости легких от частоты дыхания и появлении плоховентилируемой зоны. Работа дыхания в покое увеличена, но диапазон изменений минутного объема дыхания уменьшен в результате коллапса бронхов при повышении усилия выдоха. В силу тех же причин уменьшена предельная величина работы дыхания.

ж) снижение тонуса крупных бронхов (гипотоническая дискинезия) - происходит пролабирование (прогибание) мембранозной части трахеи и крупных бронхов, частично или полностью перекрывающее их просвет при выдохе, особенно при форсированном дыхании или кашле.

Приведенные выше изменения приводят к обструктивному типу нарушений вентиляции, проявлением которого являются возрастание бронхиального сопротивления и уменьшение скоростей воздушного потока при выдохе и вдохе. У большинства больных в генезе бронхиальной обструкции одновременно играют роль несколько перечисленных факторов, но преобладающим является обычно один из них.

Нарушения бронхиальной проходимости обычно сопровождаются повышением воздухонаполненности легких. Внутригрудной объем может увеличиваться по сравнению с нормой в 2-3 раза (до 7-8 л). Увеличение внутригрудного объема приводит к:

а) установке нового уровня равновесия между эластическими силами легкого и грудной клетки,

б) при повышении бронхиального сопротивления происходит замедление выдоха и рефлекторное его прерывание из-за быстрого нарастания альвеолярного давления,

в) при смещении уровня дыхания в инспираторную сторону увеличивается эластическая отдача легких, что ведет к уменьшению энергетических трат на осуществление выдоха (это можно рассматривать как механизм компенсации),

г) растяжение эластических структур легочной ткани передается на стенки внутрилегочных дыхательных путей, увеличивая тем самым силы, радиально растягивающие бронхи, что может привести к восстановлению просвета бронхов и улучшению бронхиальной проходимости (еще один компенсаторный механизм),

д) увеличение внутригрудного объема создает условия для раскрытия пор Кона (альвеолярные поры диаметром около 10-15 мкм, через которые смежные альвеолы могут сообщаться друг с другом) и коллатеральной вентиляции (компенсаторный механизм),

е) при удлинении времени наполнения и опорожнения легких и увеличении времени прохождения воздуха по транзиторной зоне дыхательных путей рост внутригрудного объема приводит к увеличению поверхности диффузии и улучшению условий газообмена (механизм компенсации).

Утрата легкими эластических свойств наблюдается при ЭМФИЗЕМЕ легких. Уменьшение эластической отдачи легких приводит к тому, что грудная клетка «перетягивает» легкие и уровень равновесия эластических сил легких и грудной клетки смещается в инспираторном направлении. Увеличение внутригрудного объема при утрате легкими эластических свойств уже не способствует, как в случае бронхиальной обструкции, уменьшению активной работы выдоха, а, напротив, приводит к увеличению энерготрат и ухудшению условий газообмена. Уменьшение радиальной тяги эластических элементов легких приводит к снижению стабильности просвета внутрилегочных дыхательных путей, особенно дистальных. Бронхи, лишенные эластической поддержки, спадаются даже при очень небольшом увеличении внутригрудного давления, так как имеет место преобладание сил, действующих извне на стенку бронха (см схему).

Рассмотрим, что происходит с воздухоносными путями во время акта дыхания в нормальных условиях и при снижении эластичности легких.

Поскольку во время выдоха объем легких уменьшается, наступает момент, когда мелкие воздухоносные пути закрываются, и это само по себе становится препятствием для дальнейшего выхождения воздуха из альвеол. Возникает так называемая «ловушка воздуха». Это состояние обозначают

Взаимоотношения плеврального (РрІ), альвеолярного (Р), легочного эластического (РеІ) давлений у здорового во время дыхательной паузы (I), форсированного вдоха (II), форсированного выдоха (III) и при утрате легкими эластических свойств (IV) (По “Руководство по клинической физиологии дыхания”, под ред. Л. И Шика, Η. Н Канаева, І980)

как объем закрытия (ОЗ) или как экспираторное закрытие дыхательных путей (ЭЗДП) В результате альвеолы полностью не спадаются.

В нормальных условиях процесс выглядит следующим образом (I) При отсутствии движения воздуха по дыхательным путям (дыхательная пауза) альвеолярное давление Ра равно атмосферному или «О». Давление, растягивающее альвеолы и бронхи (Ррі), - внутриплевральное, и сила, способствующая их спадению (эластическое давление легких - Pel), равны.

На высоте форсированного вдоха (II) в результате действия дыхательных мышц Ррі падает (становится более отрицательным), в результате Ра становится значительно ниже атмосферного Поскольку наибольшее отрицательное давление в области альвеол, то в результате преобладания сил, растягивающих бронхи, происходит расширение дыхательных путей, наиболее выраженное в их проксимальном отделе.

Во время форсированного выдоха (III) Ррі становится положительным. Наибольшее в области альвеол давление в процессе движения воздуха по бронхам постепенно снижается до «О» в ротовой полости (т.е. до величины атмосферного давления). Следовательно, на протяжении дыхательных путей должна быть точка, в которой давление изнутри и снаружи на бронхиальную стенку равны. Эту точку называют «точкой равного давления» (ТДР), и она делит дыхательные пути на два сегмента: периферический (от альвеол до ТДР) и центральный (от ТДР до атмосферы). Компрессия может произойти только бронхиол, расположенных центральнеє ТДР. Альвеола, несмотря на положительное давление внутри нее, перестает опорожняться - возникает «ловушка воздуха».

При эмфиземе (IV) происходит снижение Pel и в тоже время в результате затруднения дыхания возрастает во время выдоха Ррі. Таким образом, закрытие дыхательных путей у больных с эмфиземой, бронхитом и бронхиальной астмой происходит даже при небольшом усилии для активного выдоха и при менее интенсивном газооттоке При эмфиземе ТДР лежит близко к альвеоле. Сопротивление дыхательных путей повышено, и это создает условия для возрастания внутригрудного давления, сдавливающего дыхательные пути и коллабирующего (прогибающего) участки легких. При эмфиземе легких нарушения бронхиальной проходимости развиваются без патологического процесса внутри бронха, а вследствие экспираторного коллапса. Последний приводит к выраженному увеличению бронхиального сопротивления при выдохе С потерей эластических структур отдельные зоны легких становятся более податливыми, чем другие, развивается негомогенность механических свойств легких. При выраженной эмфиземе легких негомогенность механических свойств приводит к появлению невентилируемой зоны, емкость которой может достигать 2-3 л. Кроме того, наряду с расширением альвеол имеет место их деформация (см. схему).



© dagexpo.ru, 2024
Стоматологический сайт