Значение слова нейтрон. Нейтрон (элементарная частица)

21.09.2019

Нейтрон (элементарная частица)

Данная статья была написана Владимиром Горунович для сайта "Викизнание", помещена на этот сайт в целях защиты информации от вандалов, а затем дополнена на этом сайте.

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику,
  • Законы сохранения - фундаментальные законы физики.
В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку . В итоге физика скатывалась в мир математических сказок.

    1 Радиус нейтрона
    2 Магнитный момент нейтрона
    3 Электрическое поле нейтрона
    4 Масса покоя нейтрона
    5 Время жизни нейтрона
    6 Новая физика: Нейтрон (элементарная частица) - итог

Нейтрон - элементарная частица квантовое число L=3/2 (спин = 1/2) - группа барионов, подгруппа протона, электрический заряд +0 (систематизация по полевой теории элементарных частиц).

Согласно полевой теории элементарных частиц (теории - построенной на научном фундаменте и единственной получившей правильный спектр всех элементарных частиц), нейтрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей. Все голословные утверждения Стандартной модели о том, что нейтрон якобы состоит из кварков, не имеют ничего общего с действительностью . - Физика экспериментально доказала, что нейтрон обладает электромагнитными полями (нулевая величина суммарного электрического заряда, еще не означает отсутствие дипольного электрического поля, что косвенно вынуждена была признать даже Стандартная модель, введя электрические заряды у элементов структуры нейтрона), и еще гравитационным полем. О том, что элементарные частицы не просто обладают - а состоят из электромагнитных полей, физика гениально догадалась еще 100 лет назад, но вот построить теорию никак не удавалось до 2010 года. Теперь в 2015 году появилась еще и теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и получившая уравнения гравитационного поля элементарных частиц, отличные от уравнений гравитации, на основании которых была построена не одна математическая сказка в физике.

Структура электромагнитного поля нейтрона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле).

Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,18%,
  • постоянное магнитное поле (H) - 4,04%,
  • переменное электромагнитное поле - 95,78%.
Наличие мощного постоянного магнитного поля объясняет обладание нейтроном ядерными силами. Структура нейтрона приведена на рисунке.

Несмотря на нулевой электрический заряд, нейтрон обладает дипольным электрическим полем.

1 Радиус нейтрона

Полевая теория элементарных частиц определяет радиус (r) элементарной частицы как расстояние от центра до точки в которой достигается максимум плотности массы.

Для нейтрона это будет 3,3518 ∙10 -16 м. К этому надо добавить еще толщину слоя электромагнитного поля 1,0978 ∙10 -16 м.

Тогда получится 4,4496 ∙10 -16 м. Таким образом, внешняя граница нейтрона должна находиться от центра на расстоянии более 4,4496 ∙10 -16 м. Получилась величина почти равная радиусу протона и это не удивительно. Радиус элементарной частицы определяется квантовым числом L и величиной массы покоя. У обеих частиц одинаковый набор квантовых чисел L и M L , а массы покоя незначительно отличаются.

2 Магнитный момент нейтрона

В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращение электрический зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

Полевая теория элементарных частиц не считает магнитный момент нейтрона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

Так магнитный момент нейтрона создается током:

  • (0) с магнитным моментом -1 eħ/m 0n c
Далее умножаем его на процент энергии переменного электромагнитного поля нейтрона разделенный, на 100 процентов, и переводим в ядерные магнетоны. При этом не следует забывать, что ядерные магнетоны учитывают массу протона (m 0p), а не нейтрона (m 0n), так что полученный результат надо умножить на отношение m 0p /m 0n . В итоге получим 1,91304.

3 Электрическое поле нейтрона

Несмотря на нулевой электрический заряд, согласно полевой теории элементарных частиц у нейтрона должно быть постоянное электрическое поле. У электромагнитного поля, из которого состоит нейтрон, имеется постоянная составляющая, а, следовательно, у нейтрона должны быть постоянное магнитное поле и постоянное электрическое поле. Поскольку электрический заряд равен нулю то постоянное электрическое поле будет дипольным. То есть у нейтрона должно быть постоянное электрическое поле аналогичное полю двух распределенных параллельных электрических зарядов равных по величине и противоположного знака. На больших расстояниях электрическое поле нейтрона будет практически незаметно из-за взаимной компенсации полей обоих знаков заряда. Но на расстояниях порядка радиуса нейтрона это поле будет оказывать существенное влияние на взаимодействия с другими элементарными частицами близких по размерам. Это, прежде всего, касается взаимодействия в атомных ядрах нейтрона с протоном и нейтрона с нейтроном. Для нейтрон - нейтронного взаимодействия это будут силы отталкивания при одинаковом направлении спинов и силы притяжения при противоположном направлении спинов. Для нейтрон - протонного взаимодействия знак силы зависит не только от ориентации спинов, но еще и от смещения между плоскостями вращения электромагнитных полей нейтрона и протона.
Итак, у нейтрона должно быть дипольное электрическое поле двух распределенных параллельных симметричных кольцевых электрических зарядов (+0.75e и -0.75e), среднего радиуса , расположенных на расстоянии

Электрический дипольный момент нейтрона (согласно полевой теории элементарных частиц) равен:

где ħ - постоянная Планка, L - главное квантовое число в полевой теории элементарных частиц, e - элементарный электрический заряд, m 0 - масса покоя нейтрона, m 0~ - масса покоя нейтрона, заключенная в переменном электромагнитном поле, c - скорость света, P - вектор электрического дипольного момента (перпендикулярен плоскости нейтрона, проходит через центр частицы и направлен в сторону положительного электрического заряда), s - среднее расстояние между зарядами, r e - электрический радиус элементарной частицы.

Как видите, электрические заряды близки по величине к зарядам предполагаемых кварков (+2/3e=+0.666e и -2/3e=-0.666e) в нейтроне, но в отличие от кварков, электромагнитные поля в природе существуют, и аналогичной структурой постоянного электрического поля обладает любая нейтральная элементарная частица, независимо от величины спина и... .

Потенциал электрического дипольного поля нейтрона в точке (А) (в ближней зоне 10s > r > s приблизительно), в системе СИ равен:

где θ - угол между вектором дипольного момента P и направлением на точку наблюдения А, r 0 - нормировочный параметр равный r 0 =0.8568Lħ/(m 0~ c), ε 0 - электрическая постоянная, r - расстояние от оси (вращения переменного электромагнитного поля) элементарной частицы до точки наблюдения А, h - расстояние от плоскости частицы (проходящей через ее центр) до точки наблюдения А, h e - средняя высота расположения электрического заряда в нейтральной элементарной частице (равна 0.5s), |...| - модуль числа, P n - величина вектора P n . (В системе СГС отсутствует множитель .)

Напряженность E электрического дипольного поля нейтрона (в ближней зоне 10s > r > s приблизительно), в системе СИ равна:

где n =r /|r| - единичный вектор из центра диполя в направлении точки наблюдения (А), точкой (∙) обозначено скалярное произведение, жирным шрифтом выделены вектора. (В системе СГС отсутствует множитель .)

Компоненты напряженности электрического дипольного поля нейтрона (в ближней зоне 10s>r>s приблизительно) продольная (| |) (вдоль радиус-вектора, проведенного от диполя в данную точку) и поперечная (_|_) в системе СИ:

Где θ - угол между направлением вектора дипольного момента P n и радиус-вектором в точку наблюдения (в системе СГС отсутствует множитель ).

Третья компонента напряженности электрического поля - ортогональная плоскости, в которой лежат вектор дипольного момента P n нейтрона и радиус-вектор, - всегда равна нулю.

Потенциальная энергия U взаимодействия электрического дипольного поля нейтрона (n) с электрическим дипольным полем другой нейтральной элементарной частицы (2) в точке (А) в дальней зоне (r>>s), в системе СИ равна:

где θ n2 - угол между векторами дипольных электрических моментов P n и P 2 , θ n - угол между вектором дипольного электрического момента P n и вектором r , θ 2 - угол между вектором дипольного электрического моментаP 2 и вектором r , r - вектор из центра дипольного электрического момента p n в центр дипольного электрического момента p 2 (в точку наблюдения А). (В системе СГС отсутствует множитель )

Нормировочный параметр r 0 вводится с целью уменьшения отклонения значения E, от рассчитанного с помощью классической электродинамики и интегрального исчисления в ближней зоне. Нормировка происходит в точке, лежащей в плоскости параллельной плоскости нейтрона, удаленной от центра нейтрона на расстояние (в плоскости частицы) и со смещением по высоте на h=ħ/2m 0~ c, где m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося нейтрона (для нейтрона m 0~ = 0.95784 m. Для каждого уравнения параметр r 0 рассчитывается самостоятельно. В качестве приблизительного значения можно взять полевой радиус:

Из всего вышесказанного следует, что электрическое дипольное поле нейтрона (о существовании которого в природе, физика 20 века и не догадывалась), согласно законам классической электродинамики, будет взаимодействовать с заряженными элементарными частицами .

4 Масса покоя нейтрона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и нейтрона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле (которое у нейтрона есть), постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную "теорию" - поэтому ее возненавидят некоторые их авторы.

Как следует из приведенной формулы, величина массы покоя нейтрона зависит от условий, в которых нейтрон находится . Так поместив нейтрон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E 2 , что отразится на массе нейтрона и его стабильности. Аналогичная ситуация возникнет при помещении нейтрона в постоянное магнитное поле. Поэтому некоторые свойства нейтрона внутри атомного ядра, отличаются от тех же свойств свободного нейтрона в вакууме, вдали от полей.

5 Время жизни нейтрона

Установленное физикой время жизни 880 секунд соответствует свободному нейтрону.

Полевая теория элементарных частиц утверждает, что время жизни элементарной частицы зависит от условий, в которых она находится. Поместив нейтрон во внешнее поле (например, магнитное) мы изменяем энергию, содержащуюся в его электромагнитном поле. Можно выбрать направление внешнего поля так, чтобы внутренняя энергия нейтрона уменьшилась. В результате при распаде нейтрона выделится меньше энергии, что затруднит распад и увеличит время жизни элементарной частицы. Можно подобрать такую величину напряженности внешнего поля, что распад нейтрона будет требовать дополнительной энергии и, следовательно, нейтрон станет стабильным. Именно это наблюдается в атомных ядрах (например, дейтерия), в них магнитное поле соседних протонов не допускает распад нейтронов ядра. В прочем при внесении в ядро дополнительной энергии распады нейтронов вновь могут стать возможными.

6 Новая физика: Нейтрон (элементарная частица) - итог

Стандартная модель (опущенная в данной статье, но которая в 20 веке претендовала на истину) утверждает, что нейтрон является связанным состоянием трёх кварков: одного "верхнего" (u) и двух "нижних" (d) кварков (предполагаемая кварковая структура нейтрона: udd). Поскольку наличие кварков в природе экспериментально не доказано, электрический заряд, равный по величине заряду гипотетических кварков в природе не обнаружен, а имеются лишь косвенные свидетельства, которые можно интерпретировать как наличие следов кварков в некоторых взаимодействиях элементарных частиц, но можно и интерпретировать иначе, то утверждение Стандартной модели, что нейтрон обладает кварковой структурой остается всего лишь бездоказательным предположением. Любая модель, в том числе и Стандартная вправе предположить любую структуру элементарных частиц включая нейтрона, но пока на ускорителях не будут обнаружены соответствующие частицы, из которых якобы состоит нейтрон, утверждение модели следует считать не доказанным.

Стандартная модель, описывая нейтрон, вводит не найденные в природе кварки с глюонами (глюоны тоже никто не нашел), не существующие в природе поля и взаимодействия и вступает в противоречие с законом сохранения энергии;

Полевая теория элементарных частиц (Новая физика) описывает нейтрон исходя из существующих в природе полей и взаимодействий в рамках, действующих в природе законов - в этом и заключается НАУКА.

Владимир Горунович

НЕЙТРОН
Neutron

Нейтрон – нейтральная частица, относящаяся к классу барионов. Вместе с протоном нейтрон образует атомные ядра. Масса нейтрона m n = 938.57 МэВ/с 2 ≈ 1.675·10 -24 г. Нейтрон, как и протон, имеет спин 1/2ћ и является фермионом.. Он имеет и магнитный момент μ n = - 1.91μ N , где μ N = е ћ /2m р с – ядерный магнетон (m р – масса протона, использована Гауссова система единиц). Размер нейтрона около 10 -13 см. Он состоит из трёх кварков: одного u-кварка и двух d-кварков, т.е. его кварковая структура udd.
Нейтрон, являясь барионом, имеет барионное число В = +1. Нейтрон нестабилен в свободном состоянии. Так как он несколько тяжелее протона (на 0.14%), то он испытывает распад с образованием протона в конечном состоянии. При этом закон сохранения барионного числа не нарушается, так как барионное число протона также +1. В результате этого распада образуется также электрон е - и электронное антинейтрино e . Распад происходит за счёт слабого взаимодействия.


Схема распада n → р + е - + e .

Время жизни свободного нейтрона τ n ≈ 890 сек. В составе атомного ядра нейтрон может быть столь же стабилен, как и протон.
Нейтрон, будучи адроном, участвует в сильном взаимодействии.
Нейтрон был открыт в 1932 г. Дж. Чедвиком .

Нейтрон - нейтральная частица, относящаяся к классу адронов. Открыта в 1932 г. английским физиком Дж. Чедвиком. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд нейтрона равен нулю. Это подтверждается прямыми измерениями заряда по отклонению пучка нейтронов в сильных электрических полях, показавшими, что (здесь - элементарный электрический заряд, т. е. абсолютная величина заряда электрона). Косвенные данные дают оценку . Спин нейтрона равен 1/2. Как адрон с полуцелым спином он относится к группе барионов (см. Протон). У каждого бариона есть античастица; антинейтрон был открыт в 1956 г. в опытах по рассеянию антипротонов на ядрах. Антинейтрон отличается от нейтрона знаком барионного заряда; у нейтрона, как и у протона, барионный заряд равен .

Как и протон и прочие адроны, нейтрон не является истинно элементарной частицей: он состоит из одного м-кварка с электрическим зарядом и двух -кварков с зарядом - , связанных между собой глюонным полем (см. Элементарные частицы, Кварки, Сильные взаимодействия).

Нейтроны устойчивы лишь в составе стабильных атомных ядер. Свободный нейтрон - нестабильная частица, распадающаяся на протон , электрон и электронное антинейтрино (см. Бета-распад): . Время жизни нейтрона составляет с, т. е. около 15 мин. В веществе в свободном виде нейтроны существуют еще меньше вследствие сильного поглощения их ядрами. Поэтому они возникают в природе или получаются в лаборатории только в результате ядерных реакций.

По энергетическому балансу различных ядерных реакций определена величина разности масс нейтрона и протона: МэВ. Из сопоставления ее с массой протона получим массу нейтрона: МэВ; это соответствует г, или , где - масса электрона.

Нейтрон участвует во всех видах фундаментальных взаимодействий (см. Единство сил природы). Сильные взаимодействия связывают нейтроны и протоны в атомных ядрах. Пример слабого взаимодействия - бета-распад нейтрона - здесь уже рассматривался. Участвует ли эта нейтральная частица в электромагнитных взаимодействиях? Нейтрон обладает внутренней структурой, и в нем при общей нейтральности существуют электрические токи, приводящие, в частности, к появлению у нейтрона магнитного момента. Иными словами, в магнитном поле нейтрон ведет себя подобно стрелке компаса.

Это лишь один из примеров его электромагнитного взаимодействия.

Большой интерес приобрели поиски диполь-ного электрического момента нейтрона, для которого была получена верхняя граница: . Здесь самые эффективные опыты удалось поставить ученым Ленинградского института ядерной физики АН СССР. Поиски дипольного момента нейтронов важны для понимания механизмов нарушения инвариантности относительно обращения времени в микропроцессах (см. Четность).

Гравитационные взаимодействия нейтронов наблюдались непосредственно по их падению в поле тяготения Земли.

Сейчас принята условная классификация нейтронов по их кинетической энергии: медленные нейтроны эВ, есть много их разновидностей), быстрые нейтроны ( эВ), высокоэнергичные эВ). Весьма интересными свойствами обладают очень медленные нейтроны ( эВ), получившие название ультрахолодных. Оказалось, что ультрахолодные нейтроны можно накапливать в «магнитных ловушках» и даже ориентировать там их спины в определенном направлении. С помощью магнитных полей специальной конфигурации ультрахолодные нейтроны изолируются от поглощающих стенок и могут «жить» в ловушке, пока не распадутся. Это позволяет проводить многие тонкие эксперименты по изучению свойств нейтронов.

Другой метод хранения ультрахолодных нейтронов основан на их волновых свойствах. При малой энергии длина волны де Бройля (см. Квантовая механика) настолько велика, что нейтроны отражаются от ядер вещества подобно тому, как свет отражается от зеркала. Такие нейтроны можно просто хранить в замкнутой «банке». Эта идея была высказана советским физиком Я. Б. Зельдовичем в конце 1950-х гг., и первые результаты были получены в Дубне, в Объединенном институте ядерных исследований спустя почти десятилетие. Недавно советским ученым удалось построить сосуд, в котором ультрахолодные нейтроны живут до своего естественного распада.

Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. В результате взаимодействия медленных нейтронов с веществом можно наблюдать резонансные эффекты, дифракционное рассеяние в кристаллах и т. п. Благодаря этим своим особенностям нейтроны широко используются в ядерной физике и физике твердого тела. Они играют важную роль в ядерной энергетике, в производстве трансурановых элементов и радиоактивных изотопов, находят практическое применение в химическом анализе и в геологической разведке.

Свойства нейтрона

Нейтрон (лат. neuter – ни тот, ни другой) – элементарная частица с нулевым электрическим зарядом и массой немного больше массы протона. Масса нейтрона m n =939,5731(27) Мэв/с 2 =1,008664967 а.е.м . =1,675 10 -27 кг . Электрический заряд =0. Спин =1/2, нейтрон подчиняется статистике Ферми. Внутренняя четность положительна. Изотопический спин Т=1/2. Третья проекция изоспина Т 3 = -1/2. Магнитный момент = -1,9130 . Энергия связи в ядре энергия покоя Е 0 = m n c 2 = 939,5 Мэв . Свободный нейтрон распадается с периодом полураспада Т 1/2 = 11 мин по каналу за счет слабого взаимодействия. В связанном состоянии (в ядре) нейтрон живет вечно. «Исключительное положение нейтрона в ядерной физике, подобно положению электрона в электронике». Благодаря отсутствию электрического заряда нейтрон любой энергии легко проникает в ядро, и вызывает разнообразные ядерные превращения.

Примерная классификация нейтронов по энергиям приведена в табл.1.3

Название Область энергии (эв ) Средняя энергия Е(эв ) Скорость см/сек Длина волны λ (см ) Температура Т(К о)
ультрахолодные <3 10 - 7 10 - 7 5 10 2 5 10 -6 10 -3
холодные 5 10 -3 ÷10 -7 10 -3 4,37 10 4 9,04 10 -8 11,6
тепловые 5 10 -3 ÷0,5 0,0252 2,198 10 5 1,8 10 -8
резонансные 0,5÷50 1,0 1,38 10 6 2,86 10 -9 1,16 10 4
медленные 50÷500 1,38 10 7 2,86 10 -10 1,16 10 6
промежуточные 500÷10 5 10 4 1,38 10 8 2,86 10 -11 1,16 10 8
быстрые 10 5 ÷10 7 10 6 =1Мэв 1,38 10 9 2,86 10 -12 1,16 10 10
Высокоэнергет. 10 7 ÷10 9 10 8 1,28 10 10 2,79 10 -13 1,16 10 12
релятивистские >10 9 =1 Гэв 10 10 2,9910 10 1,14 10 -14 1,16 10 14

Реакции под действием нейтронов многочисленны: (n, γ ), (n,p ), (n,n’ ), (n, α), (n ,2n ), (n,f ).

Реакции радиационного захвата(n, γ ) нейтрона с последующим испусканием γ –кванта идут на медленных нейтронах с энергией от 0÷500 кэв .

Пример: Мэв .

Упругое рассеяние нейтронов (n, n ) широко используется для регистрации быстрых нейтронов методом ядер отдачи в трековых методах и для замедления нейтронов.

При неупругом рассеянии нейтронов (n,n’ ) происходит захват нейтрона с образованием составного ядра, которое распадается, выбрасывая нейтрон с энергией меньшей, чем имел первоначальный нейтрон. Неупругое рассеяние нейтронов возможно, если энергия нейтрона в раз превышает энергию первого возбужденного состояния ядра мишени. Неупругое рассеяние - пороговый процесс.

Нейтронная реакция с образованием протонов (n,p ) происходит под действием быстрых нейтронов с энергиями 0,5÷10 мэв. Наиболее важными являются реакции получения изотопа трития из гелия-3:

Мэв с сечением σ тепл = 5400 барн ,

и регистрация нейтронов методом фотоэмульсий:

0,63 Мэв с сечением σ тепл = 1,75 барн .

Нейтронные реакции (n, α) с образованием α-частиц эффективно протекают на нейтронах с энергией 0,5÷10 Мэв. Иногда реакции идут на тепловых нейтронах: реакция выработки трития в термоядерных устройствах.

Cтраница 1


Заряд нейтрона равен нулю. Следовательно, нейтроны не играют роли в величине заряда ядра атома. Этой же величине равен и порядковый номер хрома.  

Заряд протона qp e Заряд нейтрона равен нулю.  

Легко увидеть, что при этом заряд нейтрона равен нулю, а протона 1, как и полагается. Получаются все барионы, входящие в два семейства - восьмерку и десятку. Мезоны состоят из кварка и антикварка. Чертой обозначаются антикварки; их электрический заряд отличается знаком от заряда соответствующего кварка. В пи-мезон странный кварк не входит, пи-мезоны, как мы уже говорили, - частицы со странностью и спином, равными нулю.  

Так как заряд протона равен заряду электрона и заряд нейтрона равен пулю, то если выключить сильный взаимодействия, взаимодействие протона с электромагнитным полем А будет обычным взаимодействием дираковской частицы - Yp / V У нейтрона же электромагнитное взаимодействие отсутствовало бы.  

Обозначения: 67 - разность зарядов электрона и протона; q - заряд нейтрона; qg - абсолютная величина заряда электрона.  


Ядро состоит из заряженных положительно элементарных частиц - протонов и не несущих заряда нейтронов.  

В основу современных представлений о строении материи положено утверждение о существовании атомов вещества, состоящих из положительно заряженных протонов и не имеющих заряда нейтронов, образующих положительно заряженное ядро, и отрицательно заряженных вращающихся вокруг ядра электронов. Энергетические уровни электронов, согласно этой теории, носят дискретный характер, а потеря или приобретение ими некоторой дополнительной энергии рассматривается как переход с одного разрешенного энергетического уровня на другой. При этом дискретный характер энергетических электронных уровней становится причиной такого же дискретного поглощения или излучения электроном энергии при переходе с одного энергетического уровня на другой.  

Мы принимали, что заряд атома или молекулы полностью определяется скалярной суммой q Z (q Nqn, где Z - число пар электрон - протон, (q qp - qe - разность зарядов электрона и протона, Л - число нейтронов, a qn - заряд нейтрона.  

Заряд ядра определяется только числом протонов Z, а его массовое число А совпадает с полным числом протонов и нейтронов. Поскольку заряд нейтрона равен нулю, электрическое взаимодействие по закону Кулона между двумя нейтронами, а также между протоном и нейтроном отсутствует. В то же время между двумя протонами действует электрическая сила отталкивания.  


Далее, в пределах точности измерений, ни разу не был зарегистрирован ни один процесс столкновения, при котором не соблюдался бы закон сохранения заряда. Например, неотклоняемость нейтронов в однородных электрических полях позволяет рассматривать заряд нейтрона как равный нулю с точностью до 1 (Н7 заряда электрона.  

Мы уже говорили, что отличие магнитного момента протона от одного ядерного магнетона является удивительным результатом. Еще более удивительным (Представляется существование магнитного момента у не имеющего заряда нейтрона.  

Легко убедиться в том, что эти силы не сводятся ни к одному из типов сил, рассмотренных в предыдущих частях курса физики. В самом деле, если предположить, например, что между нуклонами в ядрах действуют гравитационные силы, то легко подсчитать по известным массам протона и нейтрона, что энергия связи на одну частицу окажется ничтожной - она будет в 1036 раз меньше той, которая наблюдается экспериментально. Отпадает также и предположение об электрическом характере ядерных сил. Действительно, в этом случае невозможно представить себе устойчивого ядра, состоящего из одного заряженного протона и не имеющего заряда нейтрона.  

Прочная связь, существующая между нуклонами в ядре, свидетельствует о наличии в атомных ядрах особых, так называемых ядерных сил. Легко убедиться в том, что эти силы не сводятся ни к одному из типов сил, рассмотренных в предыдущих частях курса физики. В самом деле, если предположить, например, что между нуклонами в ядрах действуют гравитационные силы, то легко подсчитать по известным массам протона и нейтрона, что энергия связи на одну частицу окажется ничтожной - она будет в 1038 раз меньше той, которая наблюдается экспериментально. Отпадает также и предположение об электрическом характере ядерных сил. Действительно, в этом случае невозможно представить себе устойчивого ядра, состоящего из одного заряженного протона и не имеющего заряда нейтрона.  



© dagexpo.ru, 2024
Стоматологический сайт