Какие процессы происходят при проведении звуковых колебаний. Органы слуха человека. Центральные вестибулярные пути

19.03.2019

Орган слуха состоит из трех отделов - наружного, среднего и внутреннего уха. Наружное и среднее ухо-это вспомогательные сенсорные структуры, обеспечивающие проведение звука к слуховым рецепторам в улитке (внутреннее ухо). Во внутреннем ухе содержатся два типа рецепторов - слуховые (в улитке) и вестибулярные (в структурах вестибулярного аппарата).

Ощущение звука возникает, когда волны сжатия, вызванные колебаниями молекул воздуха в продольном направлении, попадают на слуховые органы. Волны из чередующихся участков
сжатия (высокой плотности) и разрежения (низкой плотности) молекул воздуха распространяются от источника звука (например, камертона или струны) наподобие ряби на поверхности воды. Звук характеризуется двумя основными параметрами -силой и высотой.

Высота звука определяется его частотой, или числом волн за одну секунду. Частота измеряется в герцах (Гц). 1 Гц соответствует одному полному колебанию в секунду. Чем больше частота звука, тем выше этот звук. Человеческое ухо различает звуки в пределах от 20 до 20000 Гц. Наибольшая чувствительность уха приходится на диапазон 1000 - 4000 Гц.

Сила звука пропорциональна амплитуде колебаний звуковой волны и измеряется в логарифмических единицах - децибелах. Один децибел равен 10 lg I/ls, где ls - пороговая сила звука. За стандартную пороговую силу принимается 0,0002 дин/см2 - величина, весьма близкая к пределу слышимости у человека.

Наружное и среднее ухо

Ушная раковина служит как бы рупором, направляющим звук в слуховой канал. Для того чтобы попасть на барабанную перепонку, отделяющую наружное ухо от среднего, звуковые волны должны пройти через этот канал. Колебания барабанной перепонки передаются через заполненную воздухом полость среднего уха по цепи из трех маленьких слуховых косточек: молоточка, наковальни и стремечка. Молоточек соединяется с барабанной перепонкой, а стремечко - с перепонкой овального окна улитки внутреннего уха. Таким образом, колебания барабанной перепонки передаются через среднее ухо на овальное окно по цепи из молоточка, наковальни и стремечка.

Среднее ухо играет роль согласующего устройства, обеспечивающего передачу звука от среды низкой плотности (воздух) к более плотной (жидкость внутреннего уха). Энергия, требующаяся для сообщения какой-либо перепонке колебательных движений, зависит от плотности окружающей эту перепонку среды. Колебания в жидкости внутреннего уха требуют в 130 раз больших затрат энергии, чем в воздухе.

При передаче звуковых волн от барабанной перепонки к овальному окну по цепи слуховых косточек звуковое давление увеличивается в 30 раз. Это связано, прежде всего, с большой разницей в площади барабанной перепонки (0,55 см2) и овального окна (0,032 см2). Звук от большой барабанной перепонки передается по слуховым косточкам к маленькому овальному окну. В результате звуковое давление на единицу площади овального окна по сравнению с барабанной перепонкой возрастает.

Колебания слуховых косточек уменьшаются (гасятся) при сокращении двух мышц среднего уха: мышцы, напрягающей барабанную перепонку, и мышцы стремечка. Эти мышцы присоединяются соответственно к молоточку и стремечку. Их сокращение приводит к увеличению ригидности в цепи слуховых косточек и к уменьшению способности этих косточек проводить звуковые колебания в улитке. Громкий звук вызывает рефлекторное сокращение мышц среднего уха. Благодаря этому рефлексу слуховые рецепторы улитки предохраняются от повреждающего воздействия громких звуков.

Внутреннее ухо

Улитка образована тремя спиральными каналами, заполненными жидкостью, - вестибулярная лестница (лестница преддверия), средняя лестница и барабанная лестница. Вестибулярная и барабанная лестницы соединяются в области дистального конца улитки посредством отверстия -геликотремы, а средняя лестница расположена между ними. Средняя лестница отделена от вестибулярной лестницы тонкой рейснеровой мембраной, а от барабанной - основной (базилярной) мембраной.

Улитка заполнена двумя видами жидкости: в барабанной и вестибулярной лестницах содержится перилимфа, в средней лестнице - эндолим-фа. Состав этих жидкостей различен: в перилимфе много натрия, но мало калия, в эндолимфе мало натрия, но много калия. Из-за этих различий в ионном составе между эндолимфой средней лестницы и перилимфой барабанной и вестибулярной лестниц возникает эндокохлеарный потенциал величиной около +80 мВ. Поскольку потенциал покоя волосковых клеток равен примерно -80 мВ, между эндолимфой и рецепторными клетками создается разность потенциала в 160 мВ, что имеет большое значение для поддержания возбудимости волосковых клеток.

В области проксимального конца вестибулярной лестницы расположено овальное окно. При низкочастотных колебаниях перепонки овального окна в перилимфе вестибулярной лестницы возникают волны давления. Колебания жидкости, порожденные э тими волнами, передаются вдоль вестибулярной лестницы и затем через геликотрему в барабанную лестницу, на проксимальном конце которой находится круглое окно. В результате распространения волн давления в барабанную лестницу колебания перилимфы передаются на круглое окно. При движениях круглого окна, играющего роль демпфирующего устройства, энергия волн давления поглощается.

Кортиев орган

Слуховыми рецепторами являются волосковые клегки. Эти клетки связаны с основной мембраной; в улитке человека их около 20 тыс. С базальной поверхностью каждой волосковой клетки образуют синапсы окончания кохлеарного нерва, образуя вестибулокохлеарный нерв (VIII п.). Слуховой нерв образован волокнами кохлеарного нерва. Волосковые клегки, окончания кохлеарного нерва, покровная и основная мембраны образуют кортиев орган.

Возбуждение рецепторов

При распространении звуковых волн в улитке покровная мембрана смещается, и ее колебания приводят к возбуждению волосковые клетки. Это сопровождается изменением ионной проницаемости и деполяризацией. Возникающий при этом рецепторный потенциал возбуждает окончания кохлеарного нерва.

Различение высоты звука

Колебания основной мембраны зависят от высоты (частоты) звука. Эластичность этой мембраны постепенно возрастает по мере удаления от овального окна. У проксимального конца улитки (в области овального окна) основная мембрана уже (0,04 мм) и жестче, а ближе к геликотреме - шире и более эластична. Поэтому колебательные свойства основной мембраны постепенно изменяются по длине улитки: проксимальные участки более восприимчивы к звукам высокой частоты, а дистальные реагируют лишь на низкие звуки.

Согласно пространственной теории различения высоты звука, основная мембрана действует как анализатор частоты звуковых колебаний. От высоты звука зависит, какой участок основной мембраны будет отвечать на этот звук колебаниями наибольшей амплитуды. Чем звук ниже, тем больше и расстояние от овального окна до участка с максимальной амплитудой колебаний. Вследствие этого та частота, к которой наиболее чувствительна какая-либо волосковая клетка, определяется ее расположением клетки, реагирующие преимущественно на высокие тона, локализуются на узкой, туго натянутой основной мембране близ овального окна; рецепторы же, воспринимающие низкие звуки, расположены на более широких и менее туго натянутых дистальных участках основной мембраны.

Информация о высоте низких звуков кодируется также параметрами разрядов в волокнах кохлеарного нерва; согласно «залповой теории», частота нервных импульсов соответствует частоте звуковых колебаний. Частота потенциалов действия в волокнах кохлеарного нерва, реагирующих на звук ниже 2000 Гц, близка к частоте этих звуков; т.к. в волокне, возбуждающемся при действии тона в 200 Гц, возникает 200 импульсов в 1 с.

Центральные слуховые пути

Волокна кохлеарного нерва идут в составе вестибуло-кохлеарного нерва к продолговатому мозгу и заканчиваются в его кохлеарном ядре. От этого ядра импульсы передаются в слуховую кору по цепи вставочных нейронов слуховой системы, расположенных в продолговатом мозгу (кох-леарные ядра и ядра верхних олив), в среднем мозгу (нижнее двухолмие) и таламусе (медиальное коленчатое тело). «Конечный пункт назначения» слуховых каналов - это дорсолатеральный край височной доли, где расположена первичная слуховая область. Эту область в виде полосы окружает ассоциативная слуховая зона.

Слуховая кора отвечает за распознавание сложных звуков. Здесь соотносятся их частота и сила. В ассоциативной слуховой области интерпретируется смысл услышанных звуков. Нейроны нижележащих отделов-средней части оливы, нижнего двухолмия и медиального коленчатого тела осуществляют и (влечение и переработку информации о высаге и локализации звука.

Вестибулярная система

Лабиринт внутреннего уха, содержащий слуховые рецепторы и рецепторы равновесия, расположен в пределах височной кости и образован плоскостей. Степень смещения купулы и, следовательно, частота импульсации в вестибулярном нерве, иннервирующем волосковые клетки, зависит от величины ускорения.

Центральные вестибулярные пути

Волосковые клетки вестибулярного аппарата иннервируются волокнами вестибулярного нерва. Эти волокна идут в составе вестибулокохле-арного нерва к продолговатому мозгу, где и заканчиваются в вестибулярных ядрах. Отростки нейронов этих ядер идут к мозжечку, ретикулярной формации и спинному мозгу - двигательным центрам, управляющим положением тела при движениях благодаря информации от вестибулярного аппарата, проприорецепторов шеи и органов зрения.

Поступление вестибулярных сигналов к зрительным центрам имеет первостепенное значение для важного глазодвигательного рефлекса - нистагма. Благодаря нистагму взор при движениях головы фиксируется на неподвижном предмете. Во время вращения головы глаза медленно поворачиваются в обратную сторону, и поэтому взор фиксирован на определенной точке. Если угол вращения головы больше, чем тот, на который могут повернуться глаза, то они быстро перемещаются в направлении врашения и взор фиксируется на новой точке. Это быстрое движение и есть нистагм. При повороте головы глаза попеременно совершают медленные движения в направлении поворота и быстрые в противоположном настроении.

Функция органа слуха базируется на двух принципиально различающихся процессах — механоакустическом, определяемом как механизм звукопроведения , и нейрональном, определяемом как механизм звуковосприятия . Первый основан на ряде акустических закономерностей, второй — на процессах рецепции и трансформации механической энергии звуковых колебаний в биоэлектрические импульсы и их трансмиссии по нервным проводникам к слуховым центрам и корковым слуховым ядрам. Орган слуха получил название слухового, или звукового, анализатора, в основе функции которого лежат анализ и синтез невербальной и вербальной звуковой информации, содержащей природные и искусственные звуки в окружающей среде и речевые символы — слова, отражающие материальный мир и мыслительную деятельность человека. Слух как функция звукового анализатора — важнейший фактор в интеллектуальном и социальном развитии личности человека, ибо восприятие звука является основой его языкового развития и всей его сознательной деятельности.

Адекватный раздражитель звукового анализатора

Под адекватным раздражителем звукового анализатора понимают энергию слышимого диапазона звуковых частот (от 16 до 20 000 Гц), носителем которых являются звуковые волны. Скорость распространения звуковых волн в сухом воздухе составляет 330 м/с, в воде — 1430, в металлах — 4000-7000 м/с. Особенность звукового ощущения заключается в том, что оно экстраполируется во внешнюю среду в направлении источника звука, это определяет одно из основных свойств звукового анализатора — ототопику , т. е. способность пространственного различения локализации источника звука.

Основными характеристиками звуковых колебаний являются их спектральный состав и энергия . Спектр звука бывает сплошным , когда энергия звуковых колебаний равномерно распределена по составляющим его частотам, и линейчатым , когда звук состоит из совокупности дискретных (прерывистых) частотных составляющих. Субъективно звук со сплошным спектром воспринимается как шум без определенной тональной окраски, например как шелест листвы или «белый» шум аудиометра. Линейчатым спектром с кратными частотами обладают звуки, издаваемые музыкальными инструментами и человеческим голосом. В таких звуках доминирует основная частота , которая определяет высоту звука (тон), а набор гармонических составляющих (обертонов) определяет тембр звука .

Энергетической характеристикой звуковых колебаний является единица интенсивности звука, которая определяется как энергия, переносимая звуковой волной через единицу поверхности в единицу времени . Интенсивность звука зависит от амплитуды звукового давления , а также от свойств самой среды, в которой распространяется звук. Под звуковым давлением понимают давление, возникающее при прохождении звуковой волны в жидкой или газообразной среде. Распространяясь в среде, звуковая волна образует сгущения и разряжения частиц среды.

Единицей измерения звукового давления в системе СИ является ньютон на 1 м 2 . В некоторых случаях (например, в физиологической акустике и клинической аудиометрии) для характеристики звука применяют понятие уровень звукового давления , выражаемый в децибелах (дБ), как отношение величины данного звукового давления Р к сенсорному пороговому значению звукового давления Ро = 2,10 -5 Н/м 2 . При этом число децибел N = 20lg (Р/Ро ). В воздушной среде звуковое давление в пределах слышимого диапазона частот меняется в пределах от 10 -5 Н/м 2 вблизи порога слышимости до 10 3 Н/м 2 при самых громких звуках, например при шуме, производимом реактивным двигателем. С интенсивностью звука связана субъективная характеристика слуха — громкость звука и многие другие качественные характеристики слухового восприятия.

Носителем звуковой энергии является звуковая волна. Под звуковыми волнами понимают циклические изменения состояния среды или ее возмущения, обусловленные упругостью данной среды, распространяющиеся в этой среде и несущие с собой механическую энергию. Пространство, в котором распространяются звуковые волны, называется звуковым полем.

Основными характеристиками звуковых волн являются длина волны, ее период, амплитуда и скорость распространения. Со звуковыми волнами связаны понятия излучения звука и его распространения. Для излучения звуковых волн необходимо в среде, в которой они распространяются, произвести некоторое возмущение за счет внешнего источника энергии, т. е. источника звука. Распространение звуковой волны характеризуется в первую очередь скоростью звука, которая, в свою очередь, определяется упругостью среды, т. е. степенью ее сжимаемости, и плотностью.

Распространяющиеся в среде звуковые волны обладают свойством затухания , т. е. снижением амплитуды. Степень затухания звука зависит от его частоты и упругости среды, в которой он распространяется. Чем ниже частота, тем меньше степень затухания, тем дальше распространяется звук. Поглощение звука средой заметно возрастает с увеличением его частоты. Поэтому ультразвук, особенно высокочастотный, и гиперзвук распространяются на очень малые расстояния, ограниченные несколькими сантиметрами.

Законы распространения звуковой энергии присущи механизму звукопроведения в органе слуха. Однако, чтобы звук начал распространяться по цепи слуховых косточек, необходимо, чтобы барабанная перепонка пришла в колебательное движение. Колебания последней возникают в результате ее способности резонировать , т. е. поглощать энергию падающих на нее звуковых волн.

Резонанс — это акустическое явление, в результате которого падающие на какое-либо тело звуковые волны вызывают вынужденные колебания этого тела с частотой приходящих волн. Чем ближе собственная частота колебаний облучаемого объекта к частоте падающих волн, тем больше звуковой энергии этот объект поглощает, тем выше становится амплитуда его вынужденных колебаний, в результате чего этот объект сам начинает издавать собственный звук с частотой, равной частоте падающего звука. Барабанная перепонка благодаря своим акустическим свойствам обладает способностью резонировать на широкий спектр звуковых частот практически с одинаковой амплитудой. Такой тип резонирования называется тупым резонансом .

Физиология звукопроводящей системы

Анатомическими элементами звукопроводящей системы являются ушная раковина, наружный слуховой проход, барабанная перепонка, цепь слуховых косточек, мышцы барабанной полости, структуры преддверия и улитки (перилимфа, эндолимфа, рейснерова, покровная и базилярная мембраны, волоски чувствительных клеток, вторичная барабанная перепонка (мембрана окна улитки). На рис. 1 представлена общая схема системы звукопроведения.

Рис. 1. Общая схема системы звукопроведения. Стрелками показано направление звуковой волны: 1 — наружный слуховой проход; 2 — надбарабанное пространство; 3 — наковальня; 4 — стремя; 5 — головка молоточка; 6, 10 — лестница преддверия; 7, 9 — улитковый проток; 8 — улитковая часть преддверно-улиткового нерва; 11 — барабанная лестница; 12 — слуховая труба; 13 — окно улитки, прикрытое вторичной барабанной перепонкой; 14 — окно преддверия, с подножной пластинкой стремени

Каждому из этих элементов свойственны специфические функции, которые в совокупности обеспечивают процесс первичной обработки звукового сигнала — от его «поглощения» барабанной перепонкой до разложения на частоты структурами улитки и подготовки его к рецепции. Изъятие из процесса звукопроведения любого из этих элементов или повреждение какого-либо из них приводит к нарушению передачи звуковой энергии, проявляющемуся явлением кондуктивной тугоухости .

Ушная раковина человека сохранила в редуцированном виде некоторые полезные акустические функции. Так, интенсивность звука на уровне наружного отверстия слухового прохода на 3-5 дБ выше, чем в свободном звуковом поле. Определенную роль ушные раковины играют в реализации функции ототопики и бинаурального слуха. Ушные раковины играют также и защитную роль. Благодаря особой конфигурации и рельефу при обдувании их воздушным потоком образуются разбегающиеся вихревые потоки, препятствующие попаданию в слуховой проход воздуха и пылевых частиц.

Функциональное значение наружного слухового прохода следует рассматривать в двух аспектах — клинико-физиологическом и физиолого-акустическом. Первый определяется тем, что в коже перепончатой части наружного слухового прохода имеются волосяные луковицы, сальные и потовые железы, а также специальные железы, вырабатывающие ушную серу. Указанные образования играют трофическую и защитную роль, препятствуя проникновению в наружный слуховой проход инородных тел, насекомых, пылевых частиц. Ушная сера , как правило, выделяется в небольших количествах и является естественной смазкой для стенок наружного слухового прохода. Будучи в «свежем» состоянии липкой, она способствует прилипанию к стенкам перепончато-хрящевой части наружного слухового прохода пылевых частиц. Высыхая, она во время акта жевания фрагментируется под влиянием движений в височно-нижнечелюстном суставе и вместе со слущивающимися частицами рогового слоя кожного покрова и прилипшими к ней посторонними включениями выделяется наружу. Ушная сера обладает бактерицидным свойством, в результате чего на коже наружного слухового прохода и барабанной перепонке не обнаруживается микроорганизмов. Длина и изогнутость наружного слухового прохода способствуют защите барабанной перепонки от прямого повреждения инородным телом.

Функциональный (физиолого-акустический) аспект характеризуется ролью, которую играет наружный слуховой проход в проведении звука к барабанной перепонке. На этот процесс влияет не диаметр имеющегося или возникающего в результате патологического процесса сужения слухового прохода, а протяженность этого сужения. Так, при длинных узких рубцовых стриктурах потеря слуха на разных частотах может достигать 10-15 дБ.

Барабанная перепонка является приемником-резонатором звуковых колебаний, обладающим, как уже было отмечено выше, свойством резонировать в широком диапазоне частот без существенных энергетических потерь. Колебания барабанной перепонки передаются рукоятке молоточка, далее — наковальне и стремени. Колебания подножной пластинки стремени передаются перилимфе вестибулярной лестницы, что вызывает колебания основной и покровной мембран улитки. Их колебания передаются волосковому аппарату слуховых рецепторных клеток, в которых происходит трансформация механической энергии в нервные импульсы. Колебания перилимфы в вестибулярной лестнице передаются через вершину улитки к перилимфе барабанной лестницы и далее приводят в колебание вторичную барабанную перепонку окна улитки, подвижность которой обеспечивает протекание колебательного процесса в улитке и защищает рецепторные клетки от чрезмерного механического воздействия при громких звуках.

Слуховые косточки объединены в сложную рычажную систему, обеспечивающую повышение силы звуковых колебаний, необходимое для преодоления инерции покоя перилимфы и эндолимфы улитки и силы трения перилимфы в протоках улитки. Роль слуховых косточек заключается также и в том, что они путем непосредственной передачи жидким средам улитки энергии звука предотвращают отражение звуковой волны от перилимфы в области вестибулярного окна.

Подвижность слуховых косточек обеспечивается тремя суставами, два из которых (наковальне-молоточковый и наковальне-стременной ) устроены типичным образом. Третье сочленение (подножная пластинка стремени в окне преддверия) — это лишь сустав по функции, на самом деле это сложно устроенная «заслонка», выполняющая двоякую роль: а) обеспечение подвижности стремени, необходимой для передачи звуковой энергии структурам улитки; б) герметизация ушного лабиринта в области вестибулярного (овального) окна. Элементом, обеспечивающим эти функции, является кольцевая соединительнотканная связка.

Мышцы барабанной полости (мышца, натягивающая барабанную перепонку, и стременная мышца) выполняют двойную функцию — защитную в отношении сильных звуков и адаптационную при необходимости адаптации звукопроводящей системы к слабым звукам. Они иннервируются двигательными и симпатическими нервами, что при некоторых заболеваниях (миастения, рассеянный склероз, различного рода вегетативные нарушения) нередко отражается на состоянии этих мышц и может проявляться не всегда идентифицируемыми нарушениями слуха.

Известно, что мышцы барабанной полости рефлекторно сокращаются в ответ на звуковое раздражение. Этот рефлекс исходит из рецепторов улитки. Если воздействовать звуком на одно ухо, то в другом ухе возникает содружественное сокращение мышц барабанной полости. Эта реакция получила название акустического рефлекса и используется в некоторых методиках исследования слуха.

Различают три вида звукопроведения: воздушный, тканевый и тубарный (т. е. посредством слуховой трубы). Воздушный тип — это естественное звукопроведение, обусловленное поступлением звука к волосковым клеткам спирального органа из воздушной среды посредством ушной раковины, барабанной перепонки и всей остальной системы звукопроведения. Тканевое , или костное , звукопроведение реализуется в результате проникновения звуковой энергии к подвижным звукопроводящим элементам улитки через ткани головы. Примером реализации костного звукопроведения может служить методика камертонального исследования слуха, при которой рукоятка звучащего камертона прижимается к сосцевидному отростку, темени или другой части головы.

Различают компрессионный и инерционный механизм тканевого звукопроведения. При компрессионном типе возникает сжатие и разряжение жидких сред улитки, что вызывает раздражение волосковых клеток. При инерционном типе элементы звукопроводящей системы, благодаря силам инерции, развиваемым их массой, отстают в своих колебаниях от остальных тканей черепа, в результате чего возникают колебательные движения в жидких средах улитки.

К функциям внутриулиткового звукопроведения относится не только дальнейшая передача звуковой энергии к волосковым клеткам, но и первичный спектральный анализ звуковых частот, и распределение их по соответствующим сенсорным элементам , находящимся на базилярной мембране. При этом распределении соблюдается своеобразный акустико-топический принцип «кабельной» передачи нервного сигнала к высшим слуховым центрам, позволяющий осуществлять высший анализ и синтез информации, содержащейся в звуковых сообщениях.

Слуховая рецепция

Под слуховой рецепцией понимают трансформацию механической энергии звуковых колебаний в электрофизиологические нервные импульсы, являющиеся закодированным выражением адекватного раздражителя звукового анализатора. Рецепторы спирального органа и другие элементы улитки служат генератором биотоков, именуемых улитковыми потенциалами . Существует несколько типов этих потенциалов: токи покоя, токи действия, микрофонный потенциал, суммационный потенциал.

Токи покоя регистрируются в отсутствие звукового сигнала и делятся на внутриклеточный и эндолимфатический потенциалы. Внутриклеточный потенциал регистрируется в нервных волокнах, в волосковых и опорных клетках, в структурах базилярной и рейснеровой (ретикулярной) мембран. Эндолимфатический потенциал регистрируется в эндолимфе улиткового протока.

Токи действия — это интерферированные пики биоэлектрических импульсов, генерируемые только волокнами слухового нерва в ответ на звуковое воздействие. Информация, содержащаяся в токах действия, находится в прямой пространственной зависимости от места раздражаемых на основной мембране нейронов (теории слуха Гельмгольца, Бекеши, Дэвиса и др.). Волокна слухового нерва группируются по каналам, т. е. по признаку их частотной пропускной способности. Каждый канал способен передавать только сигнал определенной частоты; таким образом, если в данный момент на улитку действуют низкие звуки, то в процессе передачи информации участвуют только «низкочастотные» волокна, а высокочастотные в это время находятся в состоянии покоя, т. е. в них регистрируется только спонтанная активность. При раздражении улитки длительным однотонным звуком частота разрядов в отдельных волокнах уменьшается, что связано с феноменом адаптации или утомлением.

Микрофонный эффект улитки является результатом ответа на звуковое воздействие только наружных волосковых клеток. Действие ототоксических веществ и гипоксия приводят к угнетению или исчезновению микрофонного эффекта улитки. Однако в метаболизме этих клеток присутствует и анаэробный компонент, поскольку микрофонный эффект сохраняется на протяжении нескольких часов после смерти животного.

Суммационный потенциал обязан своим происхождением реакции на звук внутренних волосковых клеток. При нормальном гомеостатическом состоянии улитки суммационный потенциал, регистрируемый в улитковом протоке, сохраняет оптимальный отрицательный знак, однако незначительная гипоксия, действие хинина, стрептомицина и ряда других факторов, нарушающих гомеостаз внутренних сред улитки, нарушают соотношение величин и знаков улитковых потенциалов, при котором суммационный потенциал становится положительным.

К концу 50-х гг. XX в. было установлено, что в ответ на звуковое воздействие в различных структурах улитки возникают определенные биопотенциалы, которые дают начало сложному процессу восприятия звуков; при этом акционные потенциалы (токи действия) возникают в рецепторных клетках спирального органа. В клиническом отношении представляется весьма важным факт высокой чувствительности этих клеток к дефициту кислорода, изменению уровня углекислоты и сахара в жидких средах улитки, нарушению ионного равновесия. Указанные изменения могут приводить к парабиотическим обратимым или необратимым патоморфологическим изменениям рецепторного аппарата улитки и к соответствующим нарушениям слуховой функции.

Отоакустическая эмиссия . Рецепторные клетки спирального органа помимо своей основной функции обладают еще одним удивительным свойством. В покое или при действии звука они приходят в состояние высокочастотной вибрации, в результате чего образуется кинетическая энергия, распространяющаяся как волновой процесс через ткани внутреннего и среднего уха и поглощающаяся барабанной перепонкой. Последняя под влиянием этой энергии начинает излучать наподобие диффузора громкоговорителя очень слабый звук в полосе 500-4000 Гц. Отоакустическая эмиссия является не процессом синаптического (нервного) происхождения, а результатом механических колебаний волосковых клеток спирального органа.

Психофизиология слуха

Психофизиология слуха рассматривает две основные группы проблем: а) измерение порога ощущения , под которым понимают минимальный предел чувствительности сенсорной системы человека; б) построение психофизических шкал , отражающих математическую зависимость или отношение в системе «стимул/ реакция» при различных количественных значениях ее компонентов.

Существуют две формы порога ощущения — нижний абсолютный порог ощущения и верхний абсолютный порог ощущения . Под первым понимают минимальную величину стимула, вызывающего ответную реакцию, при которой впервые возникает осознанное ощущение данной модальности (качества) раздражителя (в нашем случае — звука). Под вторым подразумевают величину раздражителя, при которой ощущение данной модальности раздражителя исчезает или качественно изменяется . Например, мощный звук вызывает искаженное восприятие его тональности или даже экстраполируется в область болевого ощущения («порог боли»).

Величина порога ощущения зависит от того, при какой степени адаптации слуха он измерен. При адаптации к тишине порог понижается, при адаптации к определенному шуму — повышается.

Подпороговыми стимулами называются те, величина которых не вызывает адекватного ощущения и не формирует чувственного восприятия. Однако, по некоторым данным, подпороговые стимулы при достаточно длительном их действии (минуты и часы) могут вызывать «спонтанные реакции» типа беспричинных воспоминаний, импульсивных решений, внезапных озарений.

С порогом ощущения связаны так называемые пороги различения : дифференциальный порог интенсивности (силы) (ДПИ или ДПС) и дифференциальный порог качества или частоты (ДПЧ). Оба этих порога измеряются как при последовательном , так и при одновременном предъявлении стимулов. При последовательном предъявлении стимулов порог различения может быть установлен в том случае, если сравниваемые интенсивности и тональности звука различаются не менее чем на 10%. Пороги одновременного различения, как правило, устанавливаются при пороговом обнаружении полезного (тестирующего) звука на фоне помехи (шумовой, речевой, гетеромодальной). Метод определения порогов одновременного различения применяют для исследования помехоустойчивости звукового анализатора.

В психофизике слуха рассматриваются также пороги пространства , местоположения и времени . Взаимодействие ощущений пространства и времени дает интегральное чувство движения . Чувство движения основано на взаимодействии зрительного, вестибулярного и звукового анализаторов. Порог местоположения определяется пространственно-временной дискретностью возбуждаемых рецепторных элементов. Так, на базальной мембране звук в 1000 Гц отображается примерно в области ее средней части, а звук 1002 Гц сдвинут в сторону основного завитка настолько, что между участками этих частот находится одна невозбужденная клетка, для которой «не нашлось» соответствующей частоты. Следовательно, теоретически порог звукового местоположения идентичен порогу различения частоты и составляет 0,2% в частотном измерении. Этот механизм обеспечивает экстраполированный в пространство порог ототопики в горизонтальной плоскости в 2-3-5°, в вертикальной плоскости этот порог в несколько раз выше.

Психофизические законы восприятия звука формируют психофизиологические функции звукового анализатора. Под психофизиологическими функциями любого органа чувств понимают процесс возникновения ощущения, специфического для данной рецепторной системы при действии на нее адекватного раздражителя. В основе психофизиологических методов лежит регистрация субъективного ответа человека на тот или иной раздражитель.

Субъективные реакции органа слуха делятся на две большие группы — спонтанные и вызванные . Первые по своему качеству приближаются к ощущениям, вызванным реальным звуком, хотя и возникают «внутри» системы, чаще всего при утомлении звукового анализатора, интоксикациях, различных местных и общих заболеваниях. Вызванные ощущения обусловлены в первую очередь действием адекватного раздражителя в заданных физиологических пределах. Однако они могут быть спровоцированы внешними патогенными факторами (акустическая или механическая травма уха или слуховых центров), тогда эти ощущения по своей сути приближаются к спонтанным.

Звуки делятся на информационные и индифферентные . Нередко вторые служат помехой для первых, поэтому в слуховой системе существует, с одной стороны, механизм селекции полезной информации, с другой — механизм подавления помех. Вместе они обеспечивают одну из важнейших физиологических функций звукового анализатора — помехоустойчивость .

В клинических исследованиях используется лишь небольшая часть психофизиологических методов исследования слуховой функции, в основе которых лежат лишь три: а) восприятие интенсивности (силы) звука, отражающееся в субъективном ощущении громкости и в дифференцировке звуков по силе; б) восприятие частоты звука, отражающееся в субъективном ощущении тона и тембра звука, а также и в дифференцировке звуков по тональности; в) восприятие пространственной локализации источника звука, отражающееся в функции пространственного слуха (ототопика). Все указанные функции в естественных условиях обитания человека (и животных) взаимодействуют, изменяя и оптимизируя процесс восприятия звуковой информации.

Психофизиологические показатели функции слуха, как и любого другого органа чувств, основываются на одной из важнейших функций сложных биологических систем — адаптации .

Адаптация — это биологический механизм, при помощи которого организм или отдельные его системы приспосабливаются к энергетическому уровню действующих на них внешних или внутренних раздражителей для адекватного функционирования в процессе своей жизнедеятельности . Процесс адаптации органа слуха может реализовываться в двух направлениях: повышение чувствительности при слабых звуках или их отсутствии и понижение чувствительности при чрезмерно сильных звуках . Повышение чувствительности органа слуха в тишине называют физиологической адаптацией. Восстановление чувствительности после ее снижения, возникающего под влиянием длительно действующего шума, называют обратной адаптацией. Время, в течение которого чувствительность органа слуха возвращается к исходному, более высокому уровню, называют временем обратной адаптации (BOA).

Глубина адаптация органа слуха к звуковому воздействию зависит от интенсивности, частоты и времени действия звука, а также от времени тестирования адаптации и соотношения частот воздействующего и тестирующего звуков. Степень слуховой адаптации оценивают по величине потери слуха над порогом и по BOA.

Маскировка — психофизиологический феномен, основанный на взаимодействии тестирующего и маскирующего звуков . Сущность маскировки заключается в том, что при одновременном восприятии двух звуков разной частоты более интенсивный (более громкий) звук будет маскировать более слабый. В объяснении этого феномена конкурируют две теории. Одна из них отдает предпочтение нейрональному механизму слуховых центров, находя подтверждение в том, что при воздействии шума на одно ухо наблюдается повышение порога чувствительности на другое ухо. Другая точка зрения основана на особенностях биомеханических процессов, происходящих на базилярной мембране, а именно при моноауральной маскировке, когда тестирующий и маскирующий звуки подаются в одно ухо, более низкие звуки маскируют более высокие звуки. Этот феномен объясняют тем, что «бегущая волна», распространяющаяся по базилярной мембране от низких звуков к вершине улитки, поглощает аналогичные волны, образующиеся от более высоких частот в нижних участках базилярной мембраны, и лишает таким образом способности последнюю резонировать на высокие частоты. Вероятно, оба указанных механизма имеют место. Рассмотренные физиологические функции органа слуха лежат в основе всех существующих методов его исследования.

Пространственное восприятие звука

Пространственное восприятие звука (ототопика по В. И. Воячеку) является одной из психофизиологических функций органа слуха, благодаря которой животные и человек обладают способностью определять направление и пространственное положение источника звука. Основу этой функции составляет двуушный (бинауральный) слух. Лица с выключенным одним ухом не способны по звуку ориентироваться в пространстве и определять направление источника звука. В клинике ототопика имеет значение при дифференциальной диагностике периферических и центральных поражений органа слуха. При поражении полушарий головного мозга возникают различные нарушения ототопики. В горизонтальной плоскости функция ототопики осуществляется с большей точностью, чем в вертикальной плоскости, что подтверждает теорию о ведущей роли в этой функции бинаурального слуха.

Теории слуха

Вышеперечисленные психофизиологические свойства звукового анализатора в той или иной степени объяснимы рядом теорий слуха, разработанных в конце XIX — начале XX в.

Резонансная теория Гельмгольца объясняет возникновение тонального слуха явлением резонирования так называемых струн основной перепонки на различные частоты: на высокие звуки резонируют короткие волокна основной мембраны, расположенные в нижнем завитке улитки, на средние частоты резонируют волокна, расположенные в среднем завитке улитки, и на низкие частоты — в верхнем завитке, где расположены наиболее длинные и расслабленные волокна.

Теория бегущей волны Бекеши основана на гидростатических процессах в улитке, обусловливающих при каждом колебании подножной пластинки стремени деформацию основной мембраны в виде волны, бегущей по направлению к вершине улитки. При низких частотах бегущая волна достигает участка основной мембраны, находящегося в верхушке улитки, где расположены длинные «струны», при высоких частотах волны вызывают изгиб основной мембраны в основном завитке, где расположены короткие «струны».

Теория П. П. Лазарева объясняет пространственное восприятие отдельных частот вдоль основной мембраны неодинаковой чувствительностью волосковых клеток спирального органа к разным частотам. Эта теория нашла свое подтверждение в трудах К. С. Равдоника и Д. И. Насонова, согласно которым живые клетки организма независимо от их принадлежности реагируют биохимическими изменениями на облучение звуком.

Теории о роли основной мембраны в пространственном различении звуковых частот нашли подтверждение в исследованиях с условными рефлексами в лаборатории И. П. Павлова. В этих исследованиях вырабатывался условный пищевой рефлекс на разные частоты, который исчезал после разрушения разных участков основной мембраны, ответственных за восприятие тех или иных звуков. В. Ф. Ундриц исследовал биотоки улитки, которые исчезали при разрушении различных участков основной мембраны.

Оториноларингология. В.И. Бабияк, М.И. Говорун, Я.А. Накатис, А.Н. Пащинин

Звуковая волна является двойным колебанием среды, в котором различают фазу повышения и фазу понижения давления. Звуковые колебания поступают в наружный слуховой проход, достигают барабанной перепонки и вызывают её колебания. В фазе повышения давления или сгущения барабанная перепонка вместе с рукояткой молоточка движется кнутри. При этом тело наковальни, соединенное с головкой молотка, благодаря подвешивающим связкам смещается кнаружи, а длинный росток наковальни - кнутри, смещая, таким образом, кнутри и стремя. Вдавливаясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия. Дальнейшее распространение волны по лестнице преддверия передают колебательные движения мембране Рейсснера, а та в свою очередь приводит в движение эндолимфу и через основную мембрану - перилимфу барабанной лестницы. В результате такого перемещения перилимфы возникают колебания основной и рейсснеровской мембран. При каждом движении стремени в сторону преддверия перилимфа в конечном итоге приводит к смещению в сторону барабанной полости мембраны окна преддверия. В фазе снижения давления происходит возврат передающей системы в исходное положение.

Воздушный путь доставки звуков во внутреннее ухо является основным. Другим путем проведения звуков к спиральному органу является костная (тканевая) проводимость. В этом случае вступает в действие механизм, при котором звуковые колебания воздуха попадают на кости черепа, распространяются в них и доходят до улитки. Однако механизм костно-тканевой передачи звука может иметь двоякий характер. В одном случае звуковая волна в виде двух фаз, распространяясь по кости до жидких сред внутреннего уха, в фазе давления будет выпячивать мембрану круглого окна и в меньшей степени основание стремени (учитывая практическую несжимаемость жидкости). Одновременно с таким компрессионным механизмом может наблюдаться другой - инерционный вариант. В этом случае при проведении звука через кость колебание звукопроводящей системы не будет совпадать с колебаниями костей черепа и, следовательно, основная и рейсснерова мембраны будут колебаться и возбуждать спиральный орган обычным путем. Колебание кос­тей черепа можно вызвать прикосновением к нему звучащего камертона или телефона. Таким образом, костный путь передачи при нарушении передачи звука через воздух приобретает большое значение.

Ушная раковина. Роль ушной раковины в физиологии слуха человека невелика. Некоторое значение она имеет в ототопике и как коллекторы звуковых волн.

Наружный слуховой проход. Представляет собой форму трубки, благодаря чему является хорошим проводником звуков в глубину. Ширина и форма слухового прохода не играет особой роли при звукопроведении. Вместе с тем механическая закупорка его препятствует распространению звуковых волн к барабанной перепонке и приводит к заметному ухудшению слуха. В слуховом проходе вблизи барабанной перепонки поддерживается постоянный уровень температуры и влажности независимо от колебаний температуры и влажности во внешней среде, что обеспечивает стабильность упругих сред барабанной полости. В силу особого строения наружного уха, давление звуковой волны в наружном слуховом проходе в два раза больше, чем в свобод­ном звуковом поле.

Барабанная перепонка и слуховые косточки. Основная роль барабанной перепонки и слуховых кос­точек заключается в трансформации звуковых колебаний большой ампли­туды и малой силы в колебания жидкостей внутреннего уха с малой амплитудой и большой силой (давлением). Колебания барабанной пере­понки приводят в соподчинение движение молоточек, наковальню и стремя. В свою очередь стремя передает колебания перилимфе, которое вызывает смещение мембран улиткового хода. Движение основной мемб­раны обусловливает раздражение чувствительных, волосковых клеток спирального органа, вследствие чего возникают нервные импульсы, следующие по слуховому пути в кору головного мозга.

Барабанная перепонка вибрирует в основном в своем нижнем квадранте с синхронным движением прикрепленного к ней молоточка. Ближе к периферии её колебания уменьшаются. При максимальной интенсивности звука колебания барабанной перепонки могут варьировать от 0,05 до 0,5 мм, причем на тоны низкой частоты размах колебаний больше, на тоны высокой частоты - меньше.

Трансформационный эффект достигается за счет разницы площади барабанной перепонки и площади основания стремени, соотношение которых составляет приблизительно 55:3 (соотношение площадей 18:1), а также благодаря рычажной системе слуховых косточек. При переводе в дБ рычажное действие системы слуховых косточек составляет 2 дБ, а повышение звукового давления вследствие разницы соотношения полезных площадей барабанной перепонки к основанию стремени обеспечивает усиление звука на 23 - 24 дБ.

По данным Бекеши /I960/, общий акустический выигрыш трансфор­матора звукового давления составляет 25 - 26 дБ. Это повышение давления компенсирует естественную потерю звуковой энергии, возникающую в результате отражения звуковой волны при переходе её из воз­душной среды в жидкую, особенно для низких и средних частот (Вульштеин JL, 1972).

Помимо трансформации звукового давления, барабанная перепонка; выполняет также функцию звукозащиты (экранирования) окна улитки. В норме звуковое давление, передаваемое через систему слуховых косточек к средам улитки, достигает окна преддверия несколько раньше, чем оно приходит к окну улитки через воздушную среду. Вследствие разницы давлений и сдвига фазы возникает движение перилимфы, вызывающее изгиб основной мембраны и раздражение рецепторного аппарата. При этом мембрана окна улитки колеблется синхронно с основанием стремени, но в противоположном направлении. При отсутствии барабанной перепонки этот механизм звукопередачи нарушается: следующая наружного слухового прохода звуковая волна одновременно в фазе достигает окна преддверия и улитки, в результате чего действие волны взаимно уничтожается. Теоретически при этом не должно быть сдвига перилимфы и раздражения чувствительных волосковых клеток. На caмом деле при полном дефекте барабанной перепонки, когда оба окна в равной степени доступны звуковым волнам, слух снижается до 45 - 50 Разрушение же цепи слуховых косточек сопровождается значительной потерей слуха (до 50-60 дБ).

Конструктивные особенности рычажной системы позволяют не только усиливать слабые звуки, но и выполнять в определённой мере защитную функцию - ослаблять передачу сильных звуков. При слабых звуках основание стремени колеблется главным образом вокруг вертикальной оси. При сильных звуках происходит скольжение в наковально-молоточковом суставе главным образом при низкочастотных тонах, в результате чего движение длинного отростка молоточка ограничивается. Наряду с этим основание стремени начинает колебаться преиму­щественно в горизонтальной плоскости, что также ослабляет переда звуковой энергии.

Помимо барабанной перепонки и слуховых косточек, защита внутреннего уха от избыточной звуковой энергии осуществляется в результате сокращения мышц барабанной полости. При сокращении мышцы стремени, когда акустический импеданс среднего уха резко возрастает, чувствительность внутреннего уха к звукам главным образом низкой частоты снижается до 45 дБ. Исходя из этого, существует мнение, стременная мышца предохраняет внутреннее ухо от избыточной энергии низкочастотных звуков (Ундриц В.Ф. и др., 1962; Мороз Б.С., 1978)

Функция мышцы, натягивающей барабанную перепонку, остается недостаточно изученной. Полагают, что она в большей степени связана с вентиляцией среднего уха и поддерживанием нормального давления в барабанной полости, чем с защитой внутреннего уха. Обе внутриушные мышцы сокращаются также при открытии рта, глотании. В этот момент чувствительность улитки к восприятию низких звуков снижается.

Звукопроводящая система среднего уха функционирует в оптималь­ном режиме, когда давление воздуха в барабанной полости и клетках сосцевидного отростка равно атмосферному давлению. В норме давление воздуха в системе среднего уха уравновешено с давлением внешней среды достигается это благодаря слуховой трубе, которая, открываясь в носоглотку, обеспечивает приток воздуха в барабанную полость. Одна­ко непрерывное поглощение воздуха слизистой оболочкой барабанной полости создает в ней слегка отрицательное давление, что требует постоянного выравнивания его с атмосферным давлением. В спокойном состоянии слуховая труба обычно закрыта. Она открывается при глота­нии или зевании в результате сокращения мышц мягкого неба (натяги­вающей и поднимающей мягкое нёбо). При закрытии слуховой трубы в ре­зультате патологического процесса, когда воздух не поступает в ба­рабанную полость, возникает резко отрицательное давление. Это при­водит к снижению слуховой чувствительности, а также к транссудации серозной жидкости из слизистой оболочки среднего уха. Потеря слуха при этом преимущественно на тоны низких и средних частот достигает 20 - 30 дБ. Нарушение вентиляционной функции слуховой трубы сказы­вается также на внутрилабиринтном давлении жидкостей внутреннего уха, что в свою очередь ухудшает проведение низкочастотных звуков.

Звуковые волны, вызывая перемещение лабиринтной жидкости, при­водят в колебание основную мембрану, на которой расположены чувст­вительные волосковые клетки спирального органа. Раздражение волосковых клеток сопровождается нервным импульсом, поступающим в спиральный ганглий, а затем по слуховому нерву к центральным отделам анализатора.

Тема 15. ФИЗИОЛОГИЯ СЛУХОВОЙ СИСТЕМЫ.

Слуховая система - одна из важнейших дистантных сенсорных систем человека в связи с возникновением у него речи как средства общения. Ее функция состоит в формировании слуховых ощущений человека в ответ на действие акустических (звуковых) сигналов, которые представляют собой колебания воздуха с разной частотой и силой. Человек слышит звуки, которые находятся в диапазоне от 20 до 20 000 Гц. Известно, что многие животные обладают значительно более широким диапазоном слышимых звуков. Например, дельфины «слышат» звуки частотой до 170 000 Гц. Но слуховая система человека предназначена преимущественно для того, чтобы слышать речь другого человека, и в этом отношении ее совершенство нельзя даже близко сравнивать со слуховыми системами других млекопитающих.

Слуховой анализатор человека состоит из

1) периферического отдела (наружного, среднего и внутреннего уха);

2) слухового нерва;

3) центральных отделов (кохлеарные ядра и ядра верхней оливы, задние бугры четверохолмия, внутреннее коленчатое тело, слуховая область коры головного мозга).

В наружном, среднем и внутреннем ухе происходят необходимые для слухового восприятия подготовительные процессы, смысл которых состоит в оптимизации параметров передаваемых звуковых колебаний при одновременном сохранении характера сигналов. Во внутреннем ухе происходит преобразование энергии звуковых волн в рецепторные потенциалы волосковых клеток .

Наружное ухо включает ушную раковину и наружный слуховой проход. Рельеф ушной раковины играет значительную роль в восприятии звуков. Если, например, этот рельеф уничтожить, залив воском, человек заметно хуже определяет направление источника звука. Наружный слуховой проход человека в среднем имеет длину около 9 см. Есть данные, что трубка такой длины и схожего диаметра имеет резонанс на частоте около 1 кГц, другими словами, звуки этой частоты немного усиливаются. Среднее ухо отделено от наружного барабанной перепонкой, которая имеет вид конуса с вершиной, обращенной в барабанную полость.

Рис. Слуховая сенсорная система

Среднее ухо заполнено воздухом. В нем находятся три косточки: молоточек, наковальня и стремечко , которые последовательно передают колебания барабанной перепонки во внутреннее ухо. Молоточек вплетен рукояткой в барабанную перепонку, другая его сторона соединена с наковальней, передающей колебания стремечку. Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Кроме того, поверхность стремечка в 22 раза меньше барабанной перепонки, что во столько же раз усиливает его давление на мембрану овального окна. В результате этого даже слабые звуковые волны, действующие на барабанную перепонку, способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям жидкости в улитке. Благоприятные условия для колебаний барабанной перепонки создает также евстахиева труба , соединяющая среднее ухо с носоглоткой, что служит выравниванию давления в нем с атмосферным.

В стенке, отделяющей среднее ухо от внутреннего, кроме овального, есть еще круглое окно улитки, тоже закрытое мембраной. Колебания жидкости улитки, возникшие у овального окна преддверия и прошедшие по ходам улитки, достигают, не затухая, круглого окна улитки. В его отсутствие из-за несжимаемости жидкости колебания ее были бы невозможны.

В среднем ухе имеются также две маленькие мышцы - одна прикреплена к ручке молоточка, а другая - к стремечку. Сокращение этих мышц предотвращает слишком большие колебания косточек, вызванных громкими звуками. Это так называемый акустический рефлекс . Основной функцией акустического рефлекса является защита улитки от повреждающей стимуляции .

Внутреннее ухо . В пирамиде височной кости имеется сложной формы полость (костный лабиринт) , составными частями которой являются преддверие, улитка и полукружные каналы. Она включает два рецепторных аппарата: вестибулярный и слуховой. Слуховой частью лабиринта является улитка , которая представляет собой спираль из двух с половиной завитков, закрученных вокруг полого костного веретена. Внутри костного лабиринта как в футляре размещен перепончатый лабиринт, по форме соответствующий костному. Вестибулярный аппарат будет рассмотрен в следующей теме.

Опишем слуховой орган. Костный канал улитки разделен двумя мембранами - основной, или базилярной , и рейснеровой или вестибулярной - на три отдельных канала, или лестницы: барабанную, вестибулярную и среднюю (перепончатый улитковый канал) . Каналы внутреннего уха заполнены жидкостями, ионный состав которых в каждом канале специфичен. Средняя лестница заполнена эндолимфой с высоким содержанием ионов калия . Две другие лестницы заполнены перилимфой, состав которой не отличается от тканевой жидкости . Вестибулярная и барабанная лестницы на вершине улитки соединяются через небольшое отверстие - геликотрему, средняя лестница заканчивается слепо.

На базилярной мембране расположен кортиев орган , состоящий из нескольких рядов волосковых рецепторных клеток, поддерживаемых опорным эпителием. Около 3500 волосковых клеток образуют внутренний ряд (внутренние волосковые клетки ), а приблизительно 12-20 тысяч наружных волосковых клеток образуют три, а в области верхушки улитки пять продольных рядов. На обращенной внутрь средней лестницы поверхности волосковых клеток имеются покрытые плазматической мембраной чувствительные волоски - стереоцилии. Волоски соединены с цитоскелетом, их механическая деформация ведет к открытию ионных каналов мембраны и возникновению рецепторного потенциала волосковых клеток. Над кортиевым органом имеется желеобразная покровная (текториальная) мембрана , образованная гликопротеином и коллагеновыми волокнами и прикрепленная к внутренней стенке лабиринта. Верхушки стереоцилии наружных волосковых клеток погружены в вещество покровной пластинки.

Средняя лестница, заполненная эндолимфой, заряжена положительно (до +80 мВ) относительно двух других лестниц. Если учесть, что потенциал покоя отдельных волосковых клеток около - 80 мВ, то в целом разность потенциала (эндокохлеарный потенциал ) на участке средняя лестница - кортиев орган может составить около 160 мВ. Эндокохлеарный потенциал играет важную роль в возбуждении волосковых клеток. Предполагают, что волосковые клетки поляризованы этим потенциалом до критического уровня. В этих условиях минимальные механические воздействия могут вызвать возбуждение рецептора.

Нейрофизиологические процессы в кортиевом органе. Звуковая волна действует на барабанную перепонку, и далее через систему косточек звуковое давление передается на овальное окно и воздействует на перилимфу вестибулярной лестницы. Поскольку жидкость несжимаема, перемещение перилимфы может передаваться через геликотрему в барабанную лестницу, а оттуда через круглое окно - обратно в полость среднего уха. Перилимфа может перемещаться и более коротким путем: рейснерова мембрана изгибается, и через среднюю лестницу давление передается на основную мембрану, затем в барабанную лестницу и через круглое окно в полость среднего уха. Именно в последнем случае раздражаются слуховые рецепторы. Колебания основной мембраны приводят к смещению волосковых клеток относительно покровной мембраны. При деформации стереоцилий волосковых клеток в них возникает рецепторный потенциал, что приводит к выделению медиатора глутамата . Воздействуя на постсинаптическую мембрану афферентного окончания слухового нерва, медиатор вызывает генерацию в нем возбуждающего постсинаптического потенциала и далее генерацию распространяющихся в нервные центры импульсов.

Венгерский ученый Г. Бекеши (1951) предложил «теорию бегущей волны», позволяющую понять, как звуковая волна определенной частоты возбуждает волосковые клетки, находящиеся в определенном месте основной мембраны. Эта теория получила всеобщее признание. Основная мембрана расширяется от основания улитки к ее вершине примерно в 10 раз (у человека от 0,04 до 0,5 мм). Предполагается, что основная мембрана закреплена только по одному краю, остальная ее часть свободно скользит, что соответствует морфологическим данным. Теория Бекеши объясняет механизм анализа звуковой волны следующим образом: высокочастотные колебания проходят по мембране лишь короткое расстояние, а длинные волны распространяются далеко. Тогда начальная часть основной мембраны служит высокочастотным фильтром, а длинные волны проходят весь путь до геликотремы. Максимальные перемещения для разных частот происходят в разных точках основной мембраны: чем ниже тон, тем ближе его максимум к верхушке улитки. Таким образом, высота звука кодируется местом на основной мембране. Такая структурно-функциональная организация рецепторной поверхности основной мембраны. определяется как тонотопическая.

Рис. Тонотопическая схема улитки

Физиология путей и центров слуховой системы. Нейроны 1-го порядка (биполярные нейроны) находятся в спиральном ганглии, который расположен параллельно кортиеву органу и повторяет завитки улитки. Один отросток биполярного нейрона образует синапс на слуховом рецепторе, а другой направляется к головному мозгу, образуя слуховой нерв. Волокна слухового нерва выходят из внутреннего слухового прохода и достигают головного мозга в области так называемого мостомозжечкового угла или латерального угла ромбовидной ямки (это анатомическая граница между продолговатым мозгом и мостом).

Нейроны 2-го порядка образуют в продолговатом мозге комплекс слуховых ядер (вентральное и дорсальное ). В каждом из них имеется тонотопическая организация. Таким образом, частотная проекция кортиева органа в целом упорядоченно повторяется в слуховых ядрах. Аксоны нейронов слуховых ядер поднимаются в лежащие выше структуры слухового анализатора как ипси-, так и контралатерально.

Следующий уровень слуховой системы находится на уровне моста и представлен ядрами верхней оливы (медиальным и латеральным) и ядром трапециевидного тела. На этом уровне уже осуществляется бинауральный (от обоих ушей) анализ звуковых сигналов. Проекции слуховых путей на указанные ядра моста организованы также тонотопически. Большинство нейронов ядер верхней оливы возбуждаются бинаурально . Благодаря бинауральному слуху сенсорная система человека определяет источники звука, находящиеся в стороне от средней линии, поскольку звуковые волны раньше действуют на ближнее к этому источнику ухо. Обнаружены две категории бинауральных нейронов. Одни возбуждаются звуковыми сигналами от обоих ушей (ВВ-тип), другие возбуждаются от одного уха, но тормозятся от другого (ВТ-тип). Существование таких нейронов обеспечивает сравнительный анализ звуковых сигналов, возникающих с левой или правой от человека стороны, что необходимо для его пространственной ориентации. Некоторые нейроны ядер верхней оливы максимально активны при расхождении времени поступления сигналов от правого и левого уха, другие нейроны наиболее сильно реагируют на различную интенсивность сигналов.

Ядро трапециевидного тела получает преимущественно контралатеральную проекцию от комплекса слуховых ядер, и в соответствии с этим нейроны реагируют преимущественно на звуковую стимуляцию контралатерального уха. В этом ядре также обнаруживается тонотопия.

Аксоны клеток слуховых ядер моста идут в составе латеральной петли. Основная часть его волокон (в основном от оливы) переключается в нижнем двухолмии, другая часть идет в таламус и заканчивается на нейронах внутреннего (медиального) коленчатого тела, а также в верхнем двухолмии.

Нижнее двухолмие , расположенное на дорсальной поверхности среднего мозга, является важнейшим центром анализа звуковых сигналов. На этом уровне, по-видимому, заканчивается анализ звуковых сигналов, необходимых для ориентировочных реакций на звук. Аксоны клеток заднего холма направляются в составе его ручки к медиальному коленчатому телу. Однако часть аксонов идет к противоположному холму, образуя интеркаликулярную комиссуру.

Медиальное коленчатое тело , относящееся к таламусу, является последним переключательным ядром слуховой системы на пути к коре. Его нейроны расположены тонотопически и образуют проекцию в слуховую кору. Некоторые нейроны медиального коленчатого тела активируются в ответ на возникновение либо на окончание сигнала, другие реагируют только на частотные или амплитудные его модуляции. Во внутреннем коленчатом теле имеются нейроны, способные постепенно увеличивать активность при неоднократном повторении одного и того же сигнала.

Слуховая кора представляет высший центр слуховой системы и располагается в височной доле. У человека в ее состав входят поля 41, 42 и частично 43. В каждой из зон имеет место тонотопия, т. е полное представительство рецепторного аппарата кортиева органа. Пространственное представительство частот, в слуховых зонах сочетается с колончатой организацией слуховой коры, особенно выраженной в первичной слуховой коре (поле 41). В первичной слуховой коре кортикальные колонки расположены тонотопически для раздельной переработки информации о звуках различной частоты слухового диапазона. Они также содержат нейроны, которые избирательно реагируют на звуки различной продолжительности, на повторяющиеся звуки, на шумы с широким частотным диапазоном и т. п. В слуховой коре происходит объединение информации о высоте тона и его интенсивности, о временных интервалах между отдельными звуками.

Вслед за этапом регистрации и объединения элементарных признаков звукового раздражителя, который осуществляют простые нейроны , в переработку информации включаются комплексные нейроны , избирательно реагирующие только на узкий диапазон частотных или амплитудных модуляций звука. Подобная специализация нейронов позволяет слуховой системе создавать целостные слуховые образы, с характерными только для них сочетаниями элементарных компонентов слухового раздражителя. Такие сочетания могут быть зафиксированы энграммами памяти, что в дальнейшем позволяет сравнивать новые акустические стимулы с прежними. Некоторые комплексные нейроны слуховой коры возбуждаются сильнее всего в ответ на действие звуков человеческой речи.

Частотно-пороговые характеристики нейронов слуховой системы . Как было описано выше, все уровни слуховой системы млекопитающих имеют тонотопический принцип организации. Другая важная характеристика нейронов слуховой системы - способность избирательно реагировать на определенную высоту звука.

У всех животных имеется соответствие между частотным диапазоном издаваемых звуков и аудиограммой, которая характеризует слышимые звуки. Частотную избирательность нейронов слуховой системы описывают частотно-пороговой кривой (ЧПК), отражающей зависимость порога реакции нейрона от частоты тонального стимула. Частота, при которой порог возбуждения данного нейрона минимальный, называется характеристической частотой. ЧПК волокон слухового нерва имеет V-образную форму с одним минимумом, который соответствует характеристической частоте данного нейрона. ЧПК слухового нерва имеет заметно более острую настройку по сравнению с амплитудно-частотными кривыми основной мембран). Предполагают, что в обострении частотно-пороговой кривой участвуют эфферентные влияния уже на уровне слуховых рецепторов (волосковые рецепторы являются вторично-чувствующими и получают эфферентные волокна).

Кодирование интенсивности звука. Сила звука кодируется частотой импульсации и числом возбужденных нейронов. Поэтому считают, что плотность потока импульсации является нейрофизиологическим коррелятом громкости. Увеличение числа возбужденных нейронов при действии все более громких звуков обусловлено тем, что нейроны слуховой системы отличаются друг от друга по порогам реакций. При слабом стимуле в реакцию вовлекается лишь небольшое число наиболее чувствительных нейронов, а при усилении звука в реакцию вовлекается все большее число дополнительных нейронов с более высокими порогами реакций. Кроме того, пороги возбуждения внутренних и наружных рецепторных клеток неодинаковы: возбуждение внутренних волосковых клеток возникает при большей силе звука, поэтому в зависимости от его интенсивности меняется соотношение числа возбужденных внутренних и наружных волосковых клеток.

В центральных отделах слуховой системы обнаружены нейроны, обладающие определенной избирательностью к интенсивности звука, т.е. реагирующие на довольно узкий диапазон интенсивности звука. Нейроны с такой реакцией впервые появляются на уровне слуховых ядер. На более высоких уровнях слуховой системы их количество возрастает. Диапазон выделяемых ими интенсивностей суживается, достигая минимальных значений у нейронов коры. Предполагают, что такая специализация нейронов отражает последовательный анализ интенсивности звука в слуховой системе.

Субъективно воспринимаемая громкость звучания зависит не только от уровня звукового давления, но и от частоты звукового стимула. Чувствительность слуховой системы максимальна для раздражителей с частотами от 500 до 4000 Гц, при других частотах она снижается.

Бинауральный слух . Человек и животные обладают пространственным слухом, т. е. способностью определять положение источника звука в пространстве . Это свойство основано на наличии бинаурального слуха , или слушания двумя ушами. Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью до 1 углового градуса. Основой этого служит способность нейронов слуховой системы оценивать интерауральные (межушные) различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удаленности источника звука от организма связана с ослаблением звука и изменением его тембра.

При раздельной стимуляции правого и левого уха через наушники задержка между звуками уже в 11 мкс или различие в интенсивности двух звуков на 1 дБ приводят к кажущемуся сдвигу локализации источника звука от средней линии в сторону более раннего или более сильного звука. В слуховых центрах есть нейроны с острой настройкой на определенный диапазон интерауральных различий по времени и интенсивности. Найдены также клетки, реагирующие лишь на определенное направление движения источника звука в пространстве.

Для слухового анализатора адекватным раздражителем является звук. Основными характеристиками каждого звукового тона являются частота и амплитуда звуковой волны. Чем больше частота, тем звук выше по тону. Сила же звука, выражаемая его громкостью, пропорциональна амплитуде и измеряется в децибелах (дБ). Человеческое ухо способно воспринимать звук в диапазоне от 20 Гц до 20 000 Гц (дети – до 32 000 Гц). Наибольшей возбудимостью ухо обладает к звукам частотой от 1000 до 4000 Гц. Ниже 1000 и выше 4000 Гц возбудимость уха сильно снижается.

Звук силой до 30 дБ слышен очень слабо, от 30 до 50 дБ соответствует шёпоту человека, от 50 до 65 дБ – обыкновенной речи, от 65 до 100 дБ – сильному шуму, 120 дБ – «болевой порог», а 140 дБ – вызывает повреждения среднего (разрыв барабанной перепонки) и внутреннего (разрушение кортиева органа) уха.

Порог слышимости речи у детей 6-9 лет – 17-24 дБА, у взрослых – 7-10 дБА. При утрате способности воспринимать звуки от 30 до 70 дБ наблюдаются затруднения при разговоре, ниже 30 дБ – констатируют почти полную глухоту.

Различные возможности слуха оцениваются дифференциальными порогами (ДП), т. е. улавливанием минимально изменяемых какого-либо из параметров звука, например, его интенсивности или частоты. У человека дифференциальный порог по интенсивности равен 0,3-0,7 дБ, по частоте 2-8 Гц.

Кость хорошо проводит звук. При некоторых формах глухоты, когда слуховой нерв не поврежден, звук проходит через кости. Глухие иногда могут танцевать, слушая музыку через пол, воспринимая её ритм ногами. Бетховен слушал игру на рояле через трость, которой он опирался на рояль, а другой конец держал в зубах. При костно-тканевом проведении, можно слышать ультразвуки – звуки с частотой свыше 50 000 Гц.

При длительном действии на ухо сильных звуков (2-3 минуты) острота слуха понижается, а в тишине – восстанавливается; для этого достаточно 10-15 секунд (слуховая адаптация ).

Временное снижение слуховой чувствительности с более длительным периодом восстановления нормальной остроты слуха, также возникающее при длительном воздействии интенсивных звуков, но восстанавливающееся после кратковременного отдыха, носит название слухового утомления . Слуховое утомление, в основе которого лежит временное охранительное торможение в коре головного мозга, – это физиологическое явление, носящее защитный характер против патологического истощения нервных центров. Не восстанавливающееся после кратковременного отдыха слуховое утомление, в основе которого лежит стойкое запредельного торможение в структурах головного мозга, носит название слухового переутомления , требующего для его снятия проведения целого ряда специальных лечебно-оздоровительных мероприятий.



Физиология звукового восприятия. Под влиянием звуковых волн в мембранах и жидкости улитки происходят сложные перемещения. Изучение их затруднено как малой величиной колебаний, так и слишком малым размером улитки и глубиной ее расположения в плотной капсуле лабиринта. Еще труднее выявить характер физиологических процессов, происходящих при трансформации механической энергии в нервное возбуждение в рецепторе, а также в нервных проводниках и центрах. В связи с этим существует лишь ряд гипотез (предположений), объясняющих процессы звуковосприятия.

Самая ранняя из них – теория Гельмгольца (1863 г.). По этой теории, в улитке возникают явления механического резонанса, в результате которого сложные звуки разлагаются на простые. Тон любой частоты имеет свой ограниченный участок на основной мембране и раздражает строго определенные нервные волокна: низкие звуки вызывают колебание у верхушки улитки, а высокие – у её основания.

Согласно новейшей гидродинамической теории Бекеши и Флетчера, которая в настоящее время считается основной, действующим началом слухового восприятия является не частота, а амплитуда звука. Амплитудному максимуму каждой частоты в диапазоне слышимости соответствует специфический участок базилярной мембраны. Под влиянием звуковых амплитуд в лимфе обеих лестниц улитки происходят сложные динамические процессы и деформации мембран, при этом место максимальной деформации соответствует пространственному расположению звуков на основной мембране, где наблюдались вихревые движения лимфы. Сенсорные клетки сильнее всего возбуждаются там, где амплитуда колебаний максимальна, поэтому разные частоты действуют на различные клетки.



В любом случае, приводимые в колебание волосковые клетки, касаются кроющей мембраны и изменяют свою форму, что приводит к возникновению в них потенциала возбуждения. Возникающее в определенных группах рецепторных клеток возбуждение, в виде нервных импульсов распространяется по волокнам слухового нерва в ядра ствола мозга, подкорковые центры, расположенные в среднем мозге, где информация, содержащаяся в звуковом стимуле, многократно перекодируется по мере прохождения через различные уровни слухового тракта. В ходе этого процесса нейроны того или иного типа выделяют «свои» свойства стимула, что обеспечивает довольно специфичную активацию нейронов высших уровней. По достижении слуховой зоны коры, локализующейся в височных долях (поля 41 – первичная слуховая кора и 42 – вторичная, ассоциативная слуховая кора по Бродману), эта многократно перекодированная информация преобразуется в слуховое ощущение. При этом в результате перекреста проводящих путей, звуковой сигнал из правого и левого уха попадает одновременно в оба полушария головного мозга.

Возрастные особенности становления слуховой чувствительности. Развитие периферических и подкорковых отделов слухового анализатора в основном заканчивается к моменту рождения, и слуховой анализатор начинает функционировать уже с первых часов жизни ребёнка. Первая реакция на звук проявляется у ребёнка расширением зрачков, задержкой дыхания, некоторыми движениями. Затем ребёнок начинает прислушиваться к голосу взрослых и реагировать на него, что связано уже с достаточной степенью развития корковых отделов анализатора, хотя завершение их развития происходит на довольно поздних этапах онтогенеза. Во втором полугодии ребёнок воспринимает определённые звукосочетания и связывает их с определёнными предметами или действиями. В возрасте 7–9 месяцев малыш начинает подражать звукам речи окружающих, а к году у него появляются первые слова.

У новорожденных восприятие высоты и громкости звука снижено, но уже к 6–7 мес. звуковое восприятие достигает нормы взрослого, хотя функциональное развитие слухового анализатора, связанное с выработкой тонких дифференцировок на слуховые раздражители, продолжается до 6–7 лет. Наибольшая острота слуха свойственна подросткам и юношам (14–19 лет), затем постепенно снижается.

2.3. Патология слухового анализатора

Нарушения слуха – это незаметное препятствие, которое может иметь далеко идущие психологические и социальные последствия. Больные со сниженным слухом или страдающие полной глухотой сталкиваются со значительными трудностями. Отрезанные от словесной коммуникации, они во многом утрачивают связь с близкими и другими окружающими их людьми и существенно изменяют свое поведение. С задачами, за решение которых отвечает слух, другие сенсорные каналы справляются крайне неудовлетворительно, поэтому слух – это важнейшее из человеческих чувств, и его потерю нельзя недооценивать. Он требуется не только для понимания речи окружающих, но и для умения говорить самому. Глухие от рождения дети не научаются говорить, так как лишены слуховых стимулов, поэтому глухота, возникающая до приобретения речи, относится к особенно серьезным проблемам. Невозможность говорить приводит к всеобщему отставанию в развитии, уменьшая возможности обучаться. Поэтому тугоухие от рождения дети, должны начинать пользоваться слуховыми аппаратами до 18-месячного возраста.

Дети с нарушением слуха делятся на три категории (классификация):

Ø глухие это дети с тотальным выпадением слуха, среди которых выделяются глухие без речи (рано оглохшие) и глухие, сохранившие речь. К рано оглохшим детям относятся и дети с двусторонним стойким нарушением слуха. У детей с врожденным или приобретенным до речевого развития нарушением слуха, в последствии глухота компенсируется другими анализаторами (наглядно-зрительными образами, вместо словесно-логических). Основная форма общения – мимика и жесты.

У детей, сохранивших речь, из-за отсутствия слухового контроля, она нечёткая, смазанная. У детей часто возникают нарушения голоса (неадекватная высота голоса, фальцет, гнусавость, резкость, неестественность тембра), так же встречаются нарушения речевого дыхания. В психическом плане дети неустойчивы, заторможены, с большими комплексами.

Ø позднооглохшие дети с потерей слуха, но с относительно сохранной речью. Они обучаются в специальных школах по специальным программам с соответствующими ТСО для нормализации остаточного слуха (прибор для вибрации, прибор механической защиты речи). Устная речь воспринимается на слух с искажениями, поэтому возникают трудности в обучении, в подборе восприятия речи, в выражении и проговаривании речи. Эти дети замкнуты, раздражительны, владеют речью с нарушениями лексического и грамматического строя речи.

Ø слабослышащие – эти дети с частичной слуховой недостаточностью, затрудняющей слуховое развитие, но сохранившие возможность самостоятельно накоплять речевой запас.

По глубине нарушения слуха выделяют 4 степени:

легкая восприятие шепота на расстоянии 3-6 м, разговорной речи 6-8 м;

умеренная – восприятие шепота – 1-3 м, разговорной речи 4-6 м;

значительная – восприятие шепота – 1 м, разговорной речи 2-4 м;

тяжелая – восприятие шепота – не бол. 5-10 см от уха, разговорной речи – не более 2 метров.

Снижение остроты слуха в силу каких-либо патологических процессов в любом из отделов слухового анализатора (гипоакузия ) или потеря слуха – это наиболее частое следствие патологии слухового анализатора. Более редкими формами нарушения слуха являются гиперакузия , когдадаже обычная речь вызывает болевые или неприятные звукоощущения (может наблюдаться при поражении лицевого нерва); двоение звука (диплакузия ), возникающее при неодинаковом воспроизведении левым и правым ухом высоты звукового сигнала; паракузия – улучшение остроты слуха в шумной обстановке, характерная для отосклероза.

Гипоакузия условно может быть связана с тремя категориями причин:

1. Нарушения проведения звука. Ослабление слуха вследствие механического препятствия для прохождения звуковых волн может быть вызвано накоплением в наружном слуховом проходе ушной серы . Она выделяется железами наружного слухового прохода и выполняет защитную функцию, но, скапливаясь в наружном слуховом проходе, образует серную пробку, удаление которой полностью восстанавливает слух. Сходный эффект даёт и присутствие инородных тел в слуховом проходе, которое особенно часто отмечается у детей. Следует отметить, что основную опасность представляет не столько присутствие инородного тела в ухе, сколько неудачные попытки его удаления.

Нарушение слуха может быть вызвано разрывом барабанной перепонки при воздействии очень сильных шумов или звуков, например, взрывной волны. В таких случаях рекомендуется открывать рот к моменту, когда произойдет взрыв. Частой причиной перфорации барабанной перепонки является ковыряние в ухе шпильками, спичками и другими предметами, а также неумелые попытки удаления инородных тел из уха. Нарушение целости барабанной перепонки при сохранности остальных отделов слухового органа, сравнительно мало отражается на слуховой функции (страдает лишь восприятие низких звуков). Главную опасность несут последующие инфицирование и развитие гнойного воспаления в барабанной полости.

Потеря эластичности барабанной перепонки при воздействии производственных шумов приводит к постепенной потере остроты слуха (профессиональной тугоухости).

Воспаление тимпанально-косточкового аппарата снижает его способности по усилению звука и даже при здоровом внутреннем ухе слух ухудшается.

Воспаления среднего уха представляют опасность для слухового восприятия своими последствиями (осложнениями), которые наиболее часто отмечаются при хроническом характере воспаления (хронический средний отит). Например, вследствие образования спаек между стенками барабанной полости и перепонкой, подвижность последней снижается, в результате чего возникает ухудшение слуха, шум в ушах. Очень частым осложнением как хронического, так и острого гнойного отита, является прободение барабанной перепонки. Но главная опасность таится в возможном переходе воспаления на внутреннее ухо (лабиринтит), на мозговые оболочки (менингит, абсцесс мозга), либо в возникновении общего заражения крови (сепсиса).

Во многих случаях даже при правильном и своевременном лечении, особенно хронического среднего отита, восстановления слуховой функции в полном объёме не достигается, в силу возникающих рубцовых изменений барабанной перепонки, сочленений слуховых косточек. При поражениях среднего уха, как правило, возникает стойкое понижение слуха, но полной глухоты не наступает, поскольку сохраняется костная проводимость. Полная глухота после воспаления среднего уха может развиться лишь в результате перехода гнойного процесса из среднего уха во внутреннее.

Вторичный (секреторный) отит является следствием перекрытия слуховой трубы вследствие воспалительных процессов в носоглотке или разрастания аденоидов. Находящийся в среднем ухе воздух частично поглощается его слизистой оболочкой и создаётся отрицательное давление воздуха, с одной стороны, ограничивающее подвижность барабанной перепонки (следствие – ухудшение слуха), а с другой стороны – способствующее пропотеванию плазмы крови из сосудов в барабанную полость. Последующая организация плазменного сгустка может приводить к развитию спаечного процесса в барабанной полости.

Особое место занимает отосклероз, заключающийся в разрастании губчатой ткани, чаще всего в области ниши овального окна, в результате чего стремечко оказывается замурованным в овальном окне и теряет свою подвижность. Иногда это разрастание может распространяться и на лабиринт внутреннего уха, что приводит к нарушению не только функции звукопроведения, но и звуковосприятия. Проявляется, как правило, в молодом возрасте (15-16 лет) прогрессирующим падением слуха и шумом в ушах, приводя к резкой тугоухости или даже полной глухоте.

Поскольку поражения среднего уха касаются только звукопроводящих образований и не затрагивают звуковоспринимающие нейроэпителиальные структуры, вызываемая ими тугоухость называется кондуктивной. Кондуктивная тугоухость (кроме профессиональной) у большинства больных достаточно успешно корригируется микрохирургическим и аппаратным путем.

2. Нарушения восприятия звука. В этом случае повреждены волосковые клетки кортиева органа, так что нарушено либо преобразование сигнала, либо выделение нейромедиатора. В результате страдает передача информации из улитки в ЦНС и развивается сенсорная тугоухость .

Причина – воздействие внешних или внутренних неблагоприятных факторов: инфекционные заболевания детского возраста (корь, скарлатина, эпидемический цереброспинальный менингит, эпидемический паротит), общие инфекции (грипп, сыпной и возвратный тиф, сифилис); лекарственная (хинин, некоторые антибиотики), бытовая (окись углерода, светильный газ) и промышленная (свинец, ртуть, марганец) интоксикации; травмы; интенсивное воздействие производственного шума, вибрации; нарушение кровоснабжения внутреннего уха; атеросклероз, возрастные изменения.

В силу своего глубокого расположения в костном лабиринте, воспаления внутреннего уха (лабиринтиты), как правило, носят характер осложнений воспалительных процессов среднего уха или мозговых оболочек, некоторых детских инфекций (кори, скарлатины, эпидемического паротита). Гнойные диффузные лабиринтиты в подавляющем большинстве случае заканчиваются полной глухотой, вследствие гнойного расплавления кортиева органа. Результатом ограниченного гнойного лабиринтита является частичная потеря слуха на те или иные тоны, в зависимости от места поражения в улитке.

В некоторых случаях при инфекционных заболеваниях в лабиринт проникают не сами микробы, а их токсины. Развивающийся в этих случаях сухой лабиринтит протекает без гнойного воспаления и обычно не ведёт к гибели нервных элементов внутреннего уха. Поэтому полной глухоты не наступает, но нередко наблюдается значительное понижение слуха вследствие образования рубцов и сращений во внутреннем ухе.

Нарушения слуха возникают вследствие повышения давления эндолимфы на чувствительные клетки внутреннего уха, которое наблюдается при болезни Меньера. Несмотря на то, что повышение давления при этом имеет преходящий характер, снижение слуха прогрессирует не только во время обострений болезни, но и в межприступный период.

3. Ретрокохлеарные нарушения – внутреннее и среднее ухо здоровы, но нарушены либо передача нервных импульсов по слуховому нерву к слуховой зоне коры больших полушарий, либо сама деятельность корковых центров (например, при опухоли головного мозга).

Поражения проводникового отдела слухового анализатора могут возникать на любом его отрезке. Наиболее частыми являются невриты слухового нерва , под которыми понимается воспалительное поражение не только ствола слухового нерва, но и поражения нервных клеток, входящих в состав спирального нервного узла, находящегося в улитке.

Нервная ткань очень чувствительна к любым токсическим воздействиям. Поэтому очень частым следствием воздействия некоторых лекарственных (хинин, мышьяк, стрептомицин, салициловые препараты, антибиотики группы аминогликозидов и мочегонные средства) и токсических (свинец, ртуть, никотин, алкоголь, окись углерода и др.) веществ, бактерийных токсинов является гибель нервных ганглиев спирального узла, которая приводит к вторичной нисходящей дегенерации волосковых клеток кортиева органа и восходящей дегенерации нервных волокон слухового нерва, с формированием полного или частичного выпадения слуховой функции. Причём, хинин и мышьяк имеют такое же сродство к нервным элементам слухового органа, как метиловый (древесный) спирт – к нервным окончаниям в глазу. Снижение остроты слуха в таких случаях может достигать значительной выраженности, вплоть до глухоты, а лечение, как правило, не эффективно. В этих случаях реабилитация больных происходит с помощью тренировки и использования слуховых аппаратов.

Заболевания ствола слухового нерва возникают вследствие перехода воспалительных процессов с мозговых оболочек на оболочку нерва при менингите.

Проводящие слуховые пути в головном мозгу могут страдать при врождённых аномалиях и при различных заболеваниях и повреждениях мозга. Это, прежде всего, кровоизлияния, опухоли, воспалительные процессы мозга (энцефалиты) при менингите, сифилисе и др. Во всех случаях такие поражения обычно не бывают изолированными, а сопровождаются и другими мозговыми расстройствами.

Если процесс развивается в одной половине мозга и захватывает слуховые пути до их перекреста – полностью или частично нарушается слух на соответствующее ухо; выше перекреста – наступает двустороннее понижение слуха, более выраженное на стороне, противоположной поражению, но полной потери слуха не наступает, т. к. часть импульсов поступает по сохранившимся проводящим путям противоположной стороны.

Повреждение височных долей мозга, где располагается слуховая кора, может происходить при кровоизлияниях в мозг, опухолях, энцефалитах. Затрудняется понимание речи, пространственная локализация источника звука и идентификация его временных характеристик. Однако подобные поражения не влияют на способность различать частоту и силу звука. Односторонние поражения коры ведут к понижению слуха на оба уха, больше – на противоположной стороне. Двусторонних поражений проводящих путей и центрального конца слухового анализатора практически не отмечается.

Дефекты органов слуха :

1.Аллозия врождённое полное отсутствие или недоразвитие (например, отсутствие кортиева органа) внутреннего уха.

2. Атрезия – заращение наружного слухового прохода; при врождённом характере обычно сочетается с недоразвитием ушной раковины или полным её отсутствием. Приобретённая атрезия может быть следствием длительного воспаления кожи ушного прохода (при хроническом гноетечении из уха), либо рубцовых изменений после травм. Во всех случаях к значительному и стойкому понижению слуха ведёт лишь полное заращение слухового прохода. При неполных заращениях, когда в слуховом проходе имеется хотя бы минимальная щель, слух обычно не страдает.

3. Оттопыренные ушные раковины, сочетающиеся с увеличением их размера – макротия, или маленькими размерами ушной раковины микротия . Ввидутого, что функциональное значение ушной раковины невелико, все её заболевания, повреждения и аномалии развития, вплоть до полного отсутствия, не влекут за собой существенного нарушения слуха и имеют в основном лишь косметическое значение.

4. Врожденные свищи незаращение жаберной щели, открытой на передней поверхности ушной раковины, несколько выше козелка. Отверстие малозаметно и из него выделяется тягучая, прозрачная жидкость желтого цвета.

5. Врождённые аномалии среднего уха сопутствуют нарушениям развития наружного и внутреннего уха (заполнение барабанной полости костной тканью, отсутствие слуховых косточек, сращивание их).

Причина врождённых дефектов уха чаще всего кроется в нарушениях хода развития зародыша. К таким факторам относится патологическое воздействие на зародыш со стороны организма матери (интоксикации, инфицирование, травмирование плода). Известную роль играет и наследственное предрасположение.

От врождённых дефектов развития следует отличать повреждения органа слуха, возникающие во время родового акта. Например, даже травмы внутреннего уха могут быть следствием сдавления головки плода узкими родовыми путями или последствиями наложения акушерских щипцов при патологических родах.

Врожденная глухота или тугоухость – это либо наследственное нарушение эмбриологического развития периферической части слухового анализатора или отдельных его элементов (наружное, среднее ухо, костная капсула лабиринта, кортиев орган); либо нарушения слуха, связанные с вирусными инфекциями, перенесенными беременной в ранние сроки (до 3-х месяцев) беременности (корь, грипп, паротит); либо последствия поступления в организм беременных токсичных веществ (хинин, салициловые препараты, алкоголь). Врожденное снижение слуха обнаруживается уже в первый год жизни ребенка: он не переходит от «гуления» к произнесению слогов или простых слов, а, напротив, постепенно полностью замолкает. Кроме того, самое позднее, к середине второго года нормальный ребенок научается поворачиваться по направлению к звуковому стимулу.

Роль наследственного (генетического) фактора в качестве причины врождённых нарушений слуха в прежние годы несколько преувеличивалась. Однако этот фактор, несомненно, имеет некоторое значение, т. к. известно, что у глухих родителей дети с врождённым дефектом слуха рождаются чаще, чем у слышащих.

Субъективные реакции на шум. Помимо звуковой травмы, т. е. объективно наблюдаемого повреждения слуха, длительное пребывание в среде, «загрязненной» избыточными звуками («звуковой шум»), ведет к повышению раздражительности, ухудшению сна, головным болям, повышению артериального давления. Дискомфорт, вызываемый шумом, в значительной степени зависит от психологического отношения субъекта к источнику звука. Например, жильца дома может раздражать игра на пианино двумя этажами выше, хотя уровень громкости объективно невелик и у других жильцов жалоб не возникает.



© dagexpo.ru, 2024
Стоматологический сайт