Регуляция работы кровеносных сосудов. Внесердечные механизмы регуляции работы сердца. Гуморальная регуляция деятельности сердца

18.02.2019

Различные факторы влияют на свойства сердечной мышцы (возбудимость, проводимость, сократимость, автоматизм, тонус) и, следовательно, на основные параметры деятельности сердца - частоту и силу сокращений.

Влияния на частоту сердечных сокращений называются хронотропными, на силу сокращений - инотропными, на возбудимость - батмотропными, на проводимость - дромотропными, на тонус сердечной мышцы - тонотропными влияниями. Влияния, вызывающие увеличение этих показателей называются положительными, а уменьшение - отрицательными.

Регуляция деятельности сердца. Принято различать несколько форм регуляции деятельности сердца: авторегуляцию (представленную двумя ее видами - миогенным и нейрогенным) и экстракардиальную регуляцию (нервную, гуморальную, рефлекторную).

Миогенная авторегуляция включает в себя гетерометрический и гомеометрический механизмы. Гетерометрический механизм опосредован внутриклеточными взаимодействиями и связан с изменением взаиморасположения актиновых и миозиновых нитей в миофибриллах кардиомиоцитов при растяжении миокарда кровью, поступающей в полости сердца. Растяжение миокардиоцитов приводит к увеличению количества миозиновых мостиков, способных соединить миозиновые и актиновые нити во время сокращения. Чем более растянут кардиомиоцит, тем на большую величину он может укоротиться при сокращении, и тем более сильным будет это сокращение. Этот вид регуляции был установлен на сердечно-легочном препарате и сформулирован в виде "закона сердца" или закона Франка-Старлинга. Согласно этому, закону, чем больше миокард растянут во время диастолы, тем больше сила последующего сокращения (систолы). Предсистолическое растяжение миокарда обеспечивается дополнительным объемом крови, нагнетаемым в желудочки во время систолы предсердии. При утомлении сердечной мышцы и длительной нагрузки (например, при гипертонии) этот закон проявляется только в том случае, если сердечная мышца растягивается значительно больше, чем обычно. Однако, величина минутного объема сердца и в этих состояниях длительное время удерживается на нормальном уровне. При дальнейшем нарастании утомления или нагрузки этот показатель уменьшается.

Гомеометрическая авторегуляция сердца связана с определенными межклеточными отношениями и не зависит от пред систолического его растяжения. Большую роль в гомеометрической регуляции играют вставочные диски - нексусы, через которые миокардиоциты обмениваются ионами и информауией. Реализуется данная форма регуляции в виде "эффекта Анрепа" - увеличение силы сердечного сокращения при возрастании сопротивления в магистральных сосудах.



Другим проявлением гомеометрической регуляции является так называемая ритмоинотропная зависимость: изменение силы сердечных сокращений при изменении частоты. Это явление обусловлено изменением длительности потенциала действия миокардиоцитов и, следовательно, изменением количества экстрацеллюлярного кальция, входящего в миокардиоцит при развитии возбуждения.

Нейрогенная авторегуляция сердца в своей основе имеет периферические внутрисердечные рефлексы. Рефлексогенные зоны (скопление рецепторов, с которых начинаются определенные рефлексы) сердца условно делятся на контролирующие "вход" (приток крови к сердцу), "выход" (отток крови от сердца) и кровоснабжение самой сердечной мышцы (расположены в устьях коронарных сосудов). При любом изменении параметров этих процессов возникают местные рефлексы, направленные на ликвидацию отклонений гемодинамики. Например, при увеличении венозного притока и увеличении давления в устьях полых вен и в правом предсердии возникает рефлекс Бейнбриджа заключающийся в увеличении частоты сокращений сердца.

Экстракардиальная регуляция. Гуморальная регуляция. Сердечная мышца обладает высокой чувствительностью к составу крови, протекающей через ее сосуды и полости сердца. К гуморальным факторам, которые оказывают влияние на функциональное состояние сердца, относятся:

Гормоны (адреналин, тироксин и др.);

Ионы (калия, кальция, натрия и др.);

Продукты метаболизма (молочная и угольная кислоты и др.);

Температура крови.

Адреналин оказывает на сердечную мышцу положительный хроно- и инотропный эффект. Его взаимодействие с бета-адренорецепторами кардиомиоцитов приводит к активации внутриклеточного фермента аденилатциклазы, которая ускоряет образование циклического АМФ, необходимого для превращения неактивной фосфарилазы в активную. Последняя обеспечивает снабжение миокарда энергией путем расщепления внутриклеточного гликогена с образованием глюкозы. Такое же влияние на сердце (и тем же путем) оказывает глюкагон.



Гормон щитовидной железы - тироксин - обладает ярко выраженным положительным хронотропным эффектом и повышает чувствительность сердца к симпатическим воздействиям.

Положительный инотропный эффект на сердце оказывают кортикостероиды, ангиотензин, серотонин.

Избыток ионов калия оказывает на сердечную деятельность отрицательный ино-, хроно-, батмо- и дромотропный эффекты. Повышение концентрации калия в наружной среде приводит к снижению величины потенциала покоя (вследствие уменьшения градиента концентрации калия), возбудимости, проводимости и длительности ПД.

При значительном увеличении концентрации калия сино-атриальный узел перестает функционировать как водитель ритма, и происходит остановка сердца в фазе диастолы. Снижение концентрации ионов калия приводит к повышению возбудимости центров автоматии, что может сопровождаться, прежде всего, нарушениями ритма сердечных сокращений.

Умеренный избыток ионов кальция в крови оказывает положительный инотропный эффект. Это связано с тем, что ионы кальция активируют фосфарилазу и обеспечивают сопряжение возбуждения и сокращения. При значительном избытке ионов кальция происходит остановка сердца в фазе систолы, т.к. кальциевый насос миокардиоцитов не успевает выкачивать избыток ионов кальция из межфибриллярного ретикулума и разобщение нитей актина, и миозина, следовательно, и расслабления не происходит.

Нервная регуляция. Нервные влияния на деятельность сердца осуществляются импульсами, которые поступают к нему по блуждающему и симпатическим нервам. Тела первых нейронов, образующих блуждающие нервы, расположены в продолговатом мозге. Их аксоны, образующие преганглионарные волокна, идут в интрамуральные ганглии, расположенные в стенке сердца. Здесь находятся вторые нейроны, аксоны которых образуют постганглионарные волокна и иннервируют сино-атриальный узел, мышечные волокна предсердий, атрио-вентрикулярный узел и начальную часть проводящей системы желудочков.

Первые нейроны, образующие симпатические нервы, иннервирующие сердце, расположены в боковых рогах пяти верхних грудных Сегментов спинного мозга. Их аксоны (преганглионарные волокна) заканчиваются в шейных и верхних грудных симпатических узлах, в которых находятся вторые нейроны, отростки которых (постганглионарные волокна) идут к сердцу. Большая их часть отходит от звездчатого ганглия. Симпатическая иннервация, в отличие от парасимпатической, более равномерно распределена по всем отделам сердца, включая миокард желудочков. Братьями Э. и Г. Вебер впервые было показано, что раздражение блуждающих нервов оказывает на деятельность сердца отрицатель-вый ино-, хроно-, батмо- и дромотропный эффекты. Микроэлектродные отведения потенциалов от мышечных волокон предсердий показали, что при сильном раздражении блуждающего нерва происходит увеличение мембранного потенциала (гиперполяризация), которое обусловлено повышением проницаемости мембраны для ионов калия, что препятствует развитию деполяризации. Гиперполяризация пейсмекерных клеток сино-атриального узла снижает их возбудимость, что приводит вначале к запаздыванию развития МДД в сино-атриальном узле, а затем и полному ее устранению, что приводит сначала к замедлению сердечного ритма, а затем к остановке сердца. Инотропный эффект связан с укорочением ПД миокарда предсердий и желудочков. Дромотропный - связан с уменьшением атрио-вентрикулярной проводимости.

Однако, слабое раздражение блуждающего нерва может вызывать симпатический эффект. Это объясняется тем, что в сердечном интрамуральном ганглии, кроме холинэргических эфферентных нейронов, находятся адренэргические, которые, обладая более высокой возбудимостью, формируют симпатические эффекты.

Вместе с тем, при одной и той же силе раздражения эффект блуждающего нерва может иногда сопровождаться противоположными реакциями. Это связано со степенью наполнения кровью полостей сердца и сердечных сосудов, т. е. с активностью собственного (внутрисердечного) рефлекторного аппарата. При значительном наполнении и переполнении сосудов и полостей сердца, раздражение блуждающего нерва сопровождается тормозными (отрицательными) реакциями, а при слабом наполнении сердца и, следовательно, слабом возбуждении механорецепторов внутрисердечной нервной сети - стимулирующими (положительными).

Исследованиями И.Ф. Циона впервые было показано, что раздражение симпатических нервов оказывает на сердечную деятельность положительные хроно-, ино-, батмо- и тромотропныи эффекты. Среди симпатических нервов, идущих к сердцу, И.П. Павлов обнаружил нервные веточки, раздражение которых вызывает только положительный инотропный эффект. Они были названы усиливающим нервом сердца, который действует на сердце путем стимуляции в нем обмена веществ, т.е. трофики.

Раздражение симпатических нервов вызывает:

Повышение проницаемости мембраны для ионов кальция, что приводит к повышению степени сопряжения возбуждения и сокращения миокарда;

Ускорение спонтанной деполяризации клеток водителей ритма сердца, что приводит к учащению сердечных сокращений;

Ускорение проведения возбуждения в атрио-вентрикулярном узле, что уменьшает интервал между возбуждением предсердий и желудочков.

Удлинение ПД и увеличение его амплитуды, в результате чего больше экзогенного кальция поступает в саркоплазму и сила мышечного сокращения возрастает.

При раздражении ваго-симпатического ствола раньше наступает парасимпатический эффект, а затем - симпатический. Это связано с тем, что постганглионарные волокна блуждающего нерва (от интрамуральных ганглиев) очень короткие и обладают достаточно высокой скоростью проведения возбуждения. У симпатического нерва постганглионарные волокна длинные, скорость проведения возбуждения меньше, поэтому эффект от его раздражения запаздывает. Однако, действие блуждающего нерва кратковременное, т. к. его медиатор - ацетилхолин - быстро разрушается ферментом холинэстеразой. Медиатор симпатических волокон - норадреналин - разрушается значительно медленнее, чем ацетилхолин, и он действует дольше, поэтому после прекращения раздражения симпатических нервов некоторое время сохраняется учащение и усиление сердечной деятельности.

Из сравнения влияний симпатического и парасимпатического нервов на деятельность сердца видно, что они являются нервами-антагонистами, т, е. оказывают противоположные эффекты. Однако, при определенных условиях раздражения парасимпатического нерва можно получить симпатикоподобный эффект, а симпатического - вагусный. В условиях деятельности целостного организма можно говорить только об их относительном антагонизме, так как они совместно обеспечивают наилучшее, адекватное функционирование сердца в различных функциональных системах. Следовательно, их влияния не антагонистические, а скорее содружественные, т. е. они функционируют как нервы-синергисты.

Рефлекторные влияния на деятельность сердца могут возникать при раздражении различных интеро- и экстерорецепторов. Но особое значение в изменении деятельности сердца имеют рефлексы, возникающие с рецепторов, расположенных в сосудистой системе, получивших название сосудистых рефлексогенных зон. Они расположены в дуге аорты, в каротидном синусе (область разветвления общей сонной артерии) и в других участках сосудистой системы. В этих рефлексогенных зонах находится множество механо, баро-, хеморецеторов, которые реагируют на различные изменения гемодинамики и состав крови.

Рефлекторные влияния с механорецепторов каротидного синуса и дуги аорты особенно важны при повышении кровяного давления. Последнее приводит к возбуждению этих рецепторов и, как следствие, повышению тонуса блуждающего нерва, в результате чего возникает торможение деятельности сердца (отрицательный хроно- и инотропный эффекты). При этом сердце меньше перекачивает крови из венозной системы в артериальную и давление в аорте и крупных сосудах снижается.

Интенсивное раздражение интерорецепторов может рефлекторно привести к изменению деятельности сердца, вызывая либо учащение и усиление, либо ослабление и урежение сердечных сокращений. Так, например, раздражение рецепторов, брюшины (поколачивание пинцетом но животу лягушки) может привести к урежению сердечной деятельности и даже к его остановке (рефлекс Гольца). У человека кратковременная остановка сердечной деятельности также может наступить при ударе в область живота. При этом афферентные импульсы по чревным нервам достигают спинного мозга, а затем ядер блуждающих нервов, от которых по эфферентным волокнам вагуса импульсы направляются к сердцу, вызывая его остановку. К вагусным рефлексам относится и глазо-сердечный рефлекс (рефлекс Данини-Ашнера) - урежение сердечной деятельности при легком надавливании на глазные яблоки.

Корковая регуляция деятельности сердца . Изменение сердечной деятельности могут вызвать различные эмоции или упоминание о факторах, их вызывающих, что свидетельствует об участии коры больших полушарий мозга в регуляции деятельности сердца.

Наиболее убедительные данные о наличии корковой регуляции сердечной деятельности получены методом условных рефлексов. Условно-рефлекторные реакции лежат в основе предстартовых состояний спортсменов, сопровождающихся такими же изменениями деятельности сердца, как и во время соревнований.

Кора больших полушарий головного мозга обеспечивает приспособительные реакции организма не только к настоящим, но и к будущим событиям. Условно-рефлекторные сигналы, предвещающие наступление этих событий, могут вызвать изменения сердечной деятельности и всей сердечно-сосудистой системы в той мере, в какой это необходимо, чтобы обеспечить предстоящую деятельность организма.

Сосудистая система

Функциональная организация сосудистой системы. Сосуды большого и малого кругов кровообращения, в зависимости от выполняемой ими функции, можно разделить на несколько групп:

Амортизирующие сосуды (сосуды эластического типа);

Резистивные сосуды (сосуды сопротивления);

Сосуды-сфинктеры;

Обменные сосуды;

Емкостные сосуды;

Шунтирующие сосуды (артерио-венозные анастомозы).

Амортизирующие сосуды. К этим сосудам относятся артерии эластического типа с большим содержанием в сосудистой стенке эластических волокон: аорта, легочная артерия, крупные артерия. Хорошо выраженные эластические свойства таких сосудов, в частности, аорты обусловливают амортизирующий эффект (эффект "компрессионной камеры"), который выражается в амортизации (сглаживании) резкого подъема артериального давления во время систолы. Во время диастолы желудочков, после закрытия аортальных клапанов, под влиянием эластических сил аорта и крупные артерии восстанавливают свой просвет и проталкивают находящуюся в них кровь, обеспечивая, тем самым, непрерывный ток крови.

Резистивные сосуды (сосуды сопротивления). К резистивным сосудам относятся средние и мелкие артерии, артериолы и прекапиллярные сфинктеры. Эти прекапиллярные сосуды, имеющие малый просвет (диаметр) и хорошо развитую гладкую мускулатуруих стенок, оказывают наибольшее сопротивление кровотоку. Это особенно относится к артериолам, которые называют "кранами" артериальной системы. Сосудам сопротивления свойственна высокая степень внутреннего (базального) тонуса, который постоянно изменяется под влиянием местных физических и химических факторов, а также под влиянием симпатических нервов. Изменение степени сокращения мышечных волокон этих сосудов приводит к изменению их диаметра и, следовательно, общей площади поперечного сечения, а значит и изменения объемной скорости кровотока. Прекапиллярные сосуды сопротивления, таким образом влияют на отток крови из амортизирующих сосудов. Особое место среди сосудов сопротивления занимают прекапиллярные сфинктеры (сосуды-сфинктеры) - это конечные отделы прекапиллярных артериол, в стенке которых содержится больше, чем в артериоле, мышечных элементов. От функционального состояния прекапиллярных сфинктеров зависит ток крови через капилляры. Кровоток может быть настолько перекрыт, что через капилляры не проходят форменные элементы, движется только плазма ("плазменные капилляры"). Если кровоток через капилляр полностью перекрывается, то капилляр перестает функционировать, он выключается из кровообращения. Таким образом, прекапиллярные сфинктеры, изменяя число функционирующих капилляров, изменяют площадь обменной поверхности. Функциональное состояние гладкомышечных клеток прекапиллярных сфинктеров находятся под контролем механизмов внутренней миогенной регуляции и непрерывно изменяется под влиянием местных сосудорасширяющих метаболитов.

Обменные сосуды. К этим сосудам относятся капилляры, т. к. Именно в них осуществляются обменные процессы между кровью и межклеточной жидкостью (транссосудистый обмен). Интенсивность транссосудистого обмена зависит от скорости кровотока через эти сосуды и давления, под которым находится протекающая кровь. Капилляры не способны к активному изменению своего диаметра. Он изменяется вслед за колебаниями давления в пре- и посткапиллярных резистивных сосудах, т. е. меняется в зависимости от состояния прекапиллярных сфинктеров и посткапиллярных венул, вен. Емкостные сосуды. Они представлены венами, которые благодаря своей высокой растяжимости способны вмещать большие объемы крови, играя, таким образом, роль депо крови. Сопротивление Капиллярному кровотоку со стороны емкостных сосудов влияет на его скорость и давление, а, следовательно, на интенсивность транссосудистого обмена.

Артерио-венозные анастомозы (шунтирующие сосуды) - это сосуды, соединяющие артериальную и венозную части сосудистого русла, минуя капилляры. Различают два типа артерио-венозных анастомозов:

Соединяющие каналы замыкательного типа;

Гломерулярный или клубочковый тип.

При открытых артерио-венозных анастомозах кровоток через капилляры либо резко уменьшается, либо полностью прекращается. Таким образом, с помощью шунтирующих сосудов регулируется кровоток через обменные сосуды. При закрытии прекапиллярных сфинктеров через артерио-венозные анастомозы сбрасывается кровь из артериол в венулы. Состояние шунтов отражается и на общем кровотоке. При открытии анастомозов увеличивается давление в венозном русле, что увеличивает венозный приток к сердцу и, следовательно, величину сердечного выброса.

Функции артерио-венозных анастомозов:

Регулируют ток крови через орган;

Участвуют в регуляции общего и местного давления крови;

Регулируют кровенаполнение органа;

Стимулируют венозный кровоток;

Обеспечивают артериолизацию венозной крови;

Обеспечивают мобилизацию депонированной крови;

Регулируют ток межтканевой жидкости в венозном русле;

Влияют на общий кровоток через изменение местного тока жидкости и крови;

Участвуют в терморегуляции.

Микроциркуляция. Микроциркуляторной системой называется совокупность кровеносных сосудов, диаметр которых не превышает 2 мм. Процессы движения крови по сосудам этой системы называются микроциркуляцией. Микроциркуляция включает процессы, связанные с внутриорганным кровообращением, обеспечивающим тканевой метаболизм, перераспределение и депонирование крови.

В состав микроциркуляторной системы входят: терминальные артериолы и метартериолы, прекапиллярный сфинктер, собственно капилляр, посткапиллярная венула, венула, мелкие вены, артерио-венозные анастомозы.

Каждый компонент микроциркуляторной единицы выполняет определенные функции в процессе микроциркуляции. Так терминальные артериолы, метартериолы и прекапиллярный сфинктер по отношению к капиллярам выполняют транспортную функцию, они приносят кровь к капиллярам и называются приносящими сосудами. Кроме того, они, меняя величину просвета за счет сокращения или расслабления гладкомышечных элементов, регулируют скорость кровотока: увеличение сопротивления току крови (при уменьшении просвета сосуда) уменьшает скорость движения крови, уменьшение сопротивления току крови (при увеличении просвета сосуда) - увеличивает скорость кровотока. Вследствие этого меняется и давление крови в капиллярах.

Капилляры и посткапиллярные венулы называются обменными сосудами, так как в них осуществляются обменные процессы между кровью и интерстициальной жидкостью.

Венулы и вены - отводящие (емкостные) сосуды, они собирают и отводят кровь, протекающую через обменные сосуды. Сопротивление капиллярному кровотоку со стороны отводящих сосудов влияет на его скорость, величину давления в капиллярах и, следовательно, на интенсивность транссосудистого обмена.

Артерио-венозные анастомозы - с их помощью регулируется кровоток через обменные сосуды. При закрытых анастомозах кровоток через обменные сосуды увеличивается, в результате увеличения давления в артериолах и уменьшения в венуле. При открытых анастомозах кровоток уменьшается в результате уменьшения давления в артериоле и увеличения в венуле. Это сказывается на интенсивности транскапиллярного обмена.

Центральным звеном микроциркуляторной системы являются капилляры. Капилляры являются самыми тонкими и многочисленными сосудами, которые располагаются в межклеточных пространствах. Стенка капилляра состоит из трех слоев:

Слой эндотелиальных клеток;

Базальный слой, состоящий из перицитов и сплетенных между собой фибрилл;

Адвентициальный слой.

Ультраструктура стенки капилляра в различных органах имеет свою специфику (соотношение слоев между собой, характер эндотелиальных клеток и т. д.), что лежит в основе общей классификации капилляров. Выделяют три типа капилляров.

Первый тип - сплошные капилляры (соматические). Стенка капилляров этого типа образована сплошным слоем эвдотелиальных клеток, в мембране которых имеются мельчайшие поры. Стенка таких капилляров мало проницаема для крупных молекул белка, но легко пропускает воду и растворенные в ней минеральные вещества. Этот тип капилляров характерен для скелетной и гладкой мускулатуры, кожи, легких, центральной нервной системы, жировой и соединительной ткани.

Второй тип - окончатые (висцеральные). В стенке капилляров этого типа имеются "окна" (фенестры), которые могут занимать до 30% площади поверхности клетки. Такие капилляры характерны для органов, которые секретируют и всасывают большой количество воды и растворенных в ней веществ, или участвуют в быстром транспорте макромолекул: клубочки почки, слизистая оболочка кишечника, эндокринные железы.

Третий тип - межклеточно-окончатые, несплошные капилляры (синусоидные). Капилляры этого типа имеют прерывистую эндотелиальную оболочку, клетки эндотелия расположены далеко друг от друга, образуя большие межклеточные пространства. Через стенку таких капилляров легко проходят макромолекулы и форменные элементы крови. Такие капилляры встречаются в костном мозге, Печени,селезенке.

Механизм транскапиллярного обмена. Транскапиллярный (транссосудистый) обмен может осуществляться за счет пассивного транспорта (диффузия, фильтрация, абсорбция), за счет активного транспорта (работа транспортных систем) и микропиноцитоза.

Фильтрационно-абсорбционный механизм обменамежду кровью и интерстициальной жидкостью. Этот механизм обеспечивается за счет действия следующих сил. В артериальном отделе капилляра большого круга кровообращения гидростатическое давление крови равно 40 мм рт. ст. Сила этого давления способствует выходу (фильтрации) воды и растворенных в ней веществ из сосуда в межклеточную жидкость. Онкотическое давление плазмы крови, равное 30 мм рт. ст., препятствует фильтрации, т. к. белки удерживают воду в сосудистом русле. Онкотическое давление межклеточной жидкости, равное 10 мм. рт. ст., способствует фильтрации - выходу воды из сосуда. Таким образом, результирующая всех сил, действующих в артериальном отделе капилляра, равна 20 мм. рт. ст. (40+10-30=20 мм рт. ст.) и направлена из капилляра. В венозном отделе капилляра (в посткапиллярной венуле) фильтрация будет осуществляться следующими силами: гидростатическое давление крови, равное 10 мм рт. ст., онкотическое давление плазмы крови, равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна 10 мм рт. ст. (-10+30-10=10) и направлена в капилляр. Следовательно в венозном отделе капилляра происходит абсорбция воды и растворенных в ней веществ. В артериальном отделе капилляра жидкость выходит под воздействием силы в 2 раза большей, чем она входит в капилляр в его венозном отделе. Возникающий, таким образом, избыток жидкости из интерстициальных пространств оттекает через лимфатические капиляры в лимфатическую систму.

В капиллярах малого круга кровообращения транскапиллярный обмен осуществляется за счет действия следующих сил: гидростатическое давление крови в капиллярах, равное 20 мм рт. ст., онкотическое давление плазмы крови; равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна нулю. Следовательно, в капиллярах малого круга кровообращения обмена жидкости не происходит.

Диффузионный механизм транскапиллярного обмена . Этот вид обмена осуществляется в результате разности концентраций веществ в капилляре и межклеточной жидкости. Это обеспечивает движение веществ по концентрационному градиенту. Такое движение возможно потому, что размеры молекул этих веществ меньше пор мембраны и межклеточных щелей. Жирорастворимые вещества проходят мембрану независимо от величины пор и щелей, растворяясь в ее липидном слое (например, эфиры, углекислый газ и др.).

Активный механизм обмена - осуществляется эндотелиальными клетками капилляров, которые при помощи транспортных систем их мембран переносят молекулярные вещества (гормоны, белки, биологически активные вещества) и ионы.

Пиноцитозный механизм обеспечивает транспорт через стенку капилляра крупных молекул и фрагментов частей клеток опосредованно через процессы эндо- и экзопиноцитоза.

Регуляция местного кровообращения. В области микроциркуляторного русла основной (базальный или периферический) тонус, который имеет миогенную природу, характерен, прежде всего, для артериол и прекапиллярных сфинктеров. Базальный тонус контролируется местными регуляторными механизмами, которые обеспечивают ауторегуляцию микроциркуляторного (органного) кровообращения, реализуемую за счет активности гладких мышц самих сосудов. Это обеспечивает относительную автономность органного (микроциркуляторного) кровообращения, т. к. местные регуляторные механизмы мало зависят от общей нейро-гуморальной регуляции.

Растяжение сосуда при возрастании внутрисосудистого давления приводит к усилению его базального тонуса, уменьшению просвета сосуда и уменьшению давления крови и, следовательно, кровотока в участке русла, расположенного за ним по ходу тока крови.

В этих условиях (уменьшения кровоснабжения тканей) продукты метаболизма (угольная и молочная кислоты, АМФ, ионы калия), накапливаясь в межклеточной среде, уменьшают сократительную способность мышечных волокон сосудистой стенки, что отражается в снижении тонуса. Вследствие этого увеличивается просвет сосуда, возрастает кровоток, продукты метаболизма удаляются, сосудистый тонус повышается, и кровоток снова уменьшается.

Местная (органная) регуляция сосудистого тонуса, а, следовательно, и кровотока, более выражена по сравнению с общими нейрогуморальными механизмами в условиях относительного покоя организма. В условиях же его выраженной деятельности местная регуляция играет вспомогательную роль, а ведущая принадлежит нервной и гуморальной регуляции.

Нервная регуляция микроциркуляторной системы. Эфферентные нервные волокна заканчиваются на гладких мышечных волокнах артериол и прекапиллярных сфинктеров, а в капиллярах - на перицитах (клетках Руже), которые передают возбуждение на эндотелиальные клетки. В ответ на это эндотелиальные клетки набухают и закрывают капилляр или уплощаются и открывают его. Набухание эндотелиальных клеток приводит к закрытию просвета капилляра в артериальном его отделе, в венозном отделе происходит только его сужение. Набухание (округление) наступает в результате накопления жидкости в клетках под влиянием нервного возбуждения, поступающего к эндотелиальной клетке через перициты. Уплощение эндотелиальной клетки происходит в результате потери ею жидкости также под влиянием перицитов. Кроме того, существует мнение, что перицит - сократительная клетка, способная, подобно мышечной, активно менять просвет капилляра.

Морфологические и функциональные особенности капиллярного кровообращения. Особенности капилляров большого круга кровообращения.

Различные ткани организма неодинаково насыщены капиллярами: минимально-насыщена костная ткань, максимально - мозг, почки, сердце, железы внутренней секреции.

Капилляры большого круга имеют большую общую поверхность.

Капилляры близко расположены к клеткам (не далее 50 мкм), а в тканях с высоким уровнем метаболизма (печень) - еще ближе (не далее 30 мкм).

Они оказывают высокое сопротивление току крови.

Линейная скорость кровотока в них низкая (0,3-0,5 мм/с).

Относительно большой перепад давления между артериальной и венозной частями капилляра.

Как правило, проницаемость стенки капилляра высокая.

В обычных условиях работает 1/3 всех капилляров, остальные 2/3 находятся в резерве - закон резервации.

Из работающих капилляров часть функционирует (дежурят), а часть - не функционируют - закон "дежурства" капилляров.

Особенности капилляров малого круга кровообращения:

Капилляры малого круга кровообращения короче и шире по сравнению с капиллярами большого круга.

В этих капиллярах меньше сопротивление току крови, поэтому правый желудочек во время систолы развивает меньшую силу.

Сила правого желудочка создает меньшее давление в легочных артериях и, следовательно, в капиллярах малого круга.

В капиллярах малого круга практически нет перепада давления между артериальной и венозной частями капилляра.

Интенсивность кровообращения зависит от фазы дыхательного цикла: уменьшение на выдохе и увеличение на вдохе.

В капиллярах малого круга не происходит обмена жидкости и растворенных в ней веществ с окружающими тканями.

В легочных капиллярах осуществляется только газообмен.

Особенности коронарного кровоснабжения:

Коронарные артерии отходят от аорты, практически сразу же за полулунными клапанами, поэтому в них очень высокое давление крови, что обеспечивает в сердце интенсивное кровообращение.

Густая капиллярная сеть миокарда: число капилляров приближается к числу мышечных волокон.

Кровоснабжение сердечной мышцы осуществляется в основном во время диастолы, т. к. во время систолы артериолы и капилляры пережимаются сокращающимся миокардом.

Сосуды сердца имеют двойную иннервацию - симпатическую и парасимпатическую, но их влияния на коронарные сосуды противоположны влияниям на другие сосуды: симпатические нервные влияния расширяют коронарные сосуды, а парасимпатические - суживают.

Особенности мозгового кровообращения:

Кровообращение головного мозга более интенсивно, чем в некоторых других органах и тканях организма.

Мозговые артерии имеют хорошо выраженную адренэргическую иннервацию. Это дает возможность мозговым артериям изменять свой просвет в широких пределах.

Между артериолами и венулами нет артерио-венозных анастомозов.

Количество капилляров зависит от интенсивности метаболизма, поэтому в сером веществе капилляров значительно больше, чем в белом.

Капилляры находятся в открытом состоянии.

Кровь, оттекающая от мозга, поступает в вены, которые образуют синусы в твердой мозговой оболочке.

Венозная система мозга, в отличие от других органов и тканей, не выполняет емкостной функции.

Регуляция тонуса сосудов. Регуляция сосудов - это регуляция сосудистого тонуса, который определяет величину их просвета. Просвет сосудов определяется функциональным состоянием их гладкой мускулатуры, а просвет капилляров зависит от состояния клеток эндотелия и гладкой мускулатуры прекапиллярного сфинктера.

Гуморальная регуляция сосудистого тонуса. Эта регуляция осуществляется за счет тех химических веществ, которые циркулируют в кровеносном русле и изменяют ширину просвета сосудов. Все гуморальные факторы, которые оказывают влияние на тонус сосудов, делят на сосудосуживающе (вазоконстрикторы) и сосудорасширяющие (вазодилятаторы).

К сосудосуживающим веществам относятся:

адреналин - гормон мозгового вещества надпочечников, суживает артериолы кожи, органов пищеварения и легких, в низких концентрациях расширяет сосуды мозга, сердца и скелетных мышц, обеспечивая тем самым адекватное перераспределение крови, необходимое для подготовки организма к реагированию в трудной ситуации;

норадреналин - гормон мозгового вещества надпочечников по своему действию близок к адреналину, но его действие более выражено и более продолжительно;

вазопрессин - гормон, образующийся в нейронах супраоптического ядра гипоталамуса, форму в клетках задней доли гипофиза, действует в основном на артериолы;

серотонин - вырабатывается клетками стенки кишки, в некоторых участках головного мозга, а также выделяется при распаде кровяных пластинок; .

ангиотензин-II - образуется из ангиотензина-I под влиянием фермента ренина, вырабатываемого в почках.

К сосудорасширяющим веществам относятся:

гистамин - образуется в стенке желудка, кишечника, других органах, расширяет артериолы;

ацетилхолин - медиатор парасимпатических нервов и симпатических холинергических вазодилятаторов, расширяет артерии и вены;

брадикинин - выделен из экстрактов органов (поджелудочной железы, подчелюстной слюнной железы, легких), образуется при расщеплении одного из глобулинов плазмы крови, расширяет сосуды скелетных мышц, сердца, спинного и головного мозга, слюнных и потовых желез;

простагландины - образуются во многих органах и тканях, оказывают местное сосудорасширяющее действие;

углекислота - расширяет сосуды мозга, кишечника, скелетной мускулатуры;

молочная и пировиноградная кислоты - оказывают местный вазодилятаторный эффект.

Нервная регуляция сосудистого тонуса. Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой. Сосудосуживающий эффект преимущественно оказывают волокна симпатического отдела вегетативной (автономной) нервной системы, а сосудорасширяющее - парасимпатические и, частично, симпатические нервы. Сосудосуживающее действие симпатических нервов не

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕГУЛЯЦИЯ РАБОТЫ СЕРДЦА И СОСУДОВ

Регуляция работы сердца

Автоматия сердца- способность клеток сердца к самовозбуждению, без каких- либо воздействий извне.

Изолированное сердце при снабжении его питательным раствором способно сокращаться вне организма продолжительное время. У плода человека первые сокращения сердца возникают на 19-й или 20-й день внутриутробного развития, когда парные закладки сердца сливаются в одну сердечную трубку, все клетки которой способны к самовозбуждению. По мере формирования эмбрионального сердца в его ткани происходит разделение на сократительный миокард и проводящую систему сердца. Способность генерировать автоматический ритм закрепляется за узловой тканью проводящей системы, образующей узлы автоматии -- синусно-предсердный (так называемый водитель ритма сердца, или пейсмекер) и предсердно-желудочковый.

Потенциально все элементы проводящей системы в разной степени способны к генерации автоматического ритма. Существует так называемый градиент автоматии. Наиболее высокой способностью к автоматии обладает синусно-предсердный узел, где генерируется ритм, который усваивается остальными элементами проводящей системы и сократительным миокардом. У человека он равен 60-70 уд/мин в состоянии покоя. Если работа синусно-предсердного узла нарушена, функция водителя ритма переходит к предсердно-желудочковому узлу, который генерирует более медленный сердечный ритм (около 40 уд/мин), но он в состоянии обеспечить нормальную работу сердца и нормальное кровоснабжение организма. Другие элементы проводящей системы, и в первую очередь пучок Гиса, также способны к автоматии, но генерируемое здесь возбуждение возникает с еще более низкой частотой и проявляется только в условиях патологии, например при гипоксии, и ишемии. В этих условиях ненормальные очаги автоматии могут формироваться и в сократительных клетках сердца, создавая источники аритмии сердца.

Способность клетки генерировать автоматический ритм в значительной мере определяется величиной мембранного потенциала, при котором активируются ионные каналы, обеспечивающие самовозбуждение клетки (см. Потенциалы действия сердца). Для клеток узловой ткани характерен более низкий уровень мембранного потенциала, чем для сократительных клеток сердца. Гипоксия и ишемия вызывают снижение мембранного потенциала в сократительных клетках сердца и делают возможным возникновение в них автоматии.

Узловая ткань позвоночных имеет мышечное происхождение -- в этом случае принято говорить о миогенной автоматии. У части беспозвоночных животных, а именно у ракообразных, возбуждение возникает в нервных ганглиях, расположенных на поверхности сердца, откуда оно передается сократительным клеткам. В этом случае говорят о нейрогенном ритме (автоматии). Нейрогенная автоматия сердца, вероятно, явление вторичное, т. к. личинки животных, обладающих нейрогенной автоматией, имеют миогенный сердечный ритм, а после экспериментального удаления нервных ганглиев в сердце на миогенный ритм переходят и взрослые ракообразные.

Точно определить местонахождение водителя ритма в сердце и характер его автоматии позволяет регистрация потенциалов действия сердца. Потенциалы действия всех автоматических структур, и миогенных и нейрогенных, имеют предымпульсную деполяризацию, выводящую мембранный потенциал этих клеток на уровень возникновения распространяющегося электрического импульса. Потенциалы действия нейрогенных сердец имеют свою особенность: на плато потенциала действия сократительной клетки сердца у них накладывается разряд автоматических клеток нервного ганглия, придавая ему своеобразное очертание.

При разобщении клеток узловой ткани друг от друга каждая из них возбуждается с собственной частотой, отличной от частоты интактного водителя ритма. Единый ритм работы всех клеток, составляющих водитель ритма, формируется в результате синхронизации, происходящей на основе электрического и механического взаимодействия этих клеток.

Нервная регуляция деятельности сердца

Влияние нервной системы на деятельность сердца осуществляется за счет блуждающих и симпатических нервов. Эти нервы относятся к вегетативной нервной системе. Блуждающие нервы идут к сердцу от ядер, расположенных в продолговатом мозге на дне IV желудочка. Симпатические нервы подходят к сердцу от ядер, локализованных в боковых рогах спинного мозга (I -- V грудные сегменты). Блуждающие и симпатические нервы оканчиваются в синоаурикулярном и атриовентрикулярном узлах, также в мускулатуре сердца. В результате при возбуждении этих нервов наблюдаются изменения в автоматии синоаурикулярного узла, скорости проведения возбуждения по проводящей системе сердца, в интенсивности сердечных сокращений.

Слабые раздражения блуждающих нервов приводят к замедлению ритма сердца, сильные - обусловливают остановку сердечных сокращений. После прекращения раздражения блуждающих нервов деятельность сердца может вновь восстановиться.

При раздражении симпатических нервов происходит учащение ритма сердца и увеличивается сила сердечных сокращений, повышается возбудимость и тонус сердечной мышцы, а также скорость проведения возбуждения.

Тонус центров сердечных нервов. Центры сердечной деятельности, представленные ядрами блуждающих и симпатических нервов, всегда находятся в состоянии тонуса, который может быть усилен или ослаблен в зависимости от условий существования организма.

Тонус центров сердечных нервов зависит от афферентных влияний, идущих от механо- и хеморецепторов сердца и сосудов, внутренних органов, рецепторов кожи и слизистых оболочек. На тонус центров сердечных нервов оказывают воздействие и гуморальные факторы.

Есть и определенные особенности в работе сердечных нервов. Одна из низ проявляется в том, что при повышении возбудимости нейронов блуждающих нервов снижается возбудимость ядер симпатических нервов. Такие функционально взаимосвязанные отношения между центрами сердечных нервов способствуют лучшему приспособлению деятельности сердца к условиям существования организма.

Рефлекторные влияния на деятельность сердца. Эти влияния я условно разделила на: осуществляемые с самого сердца; осуществляемые через вегетативную нервную систему. Теперь поподробнее о каждых:

Рефлекторные влияния на деятельность сердца осуществляются с самого сердца. Внутрисердечные рефлекторные влияния проявляются в изменениях силы сердечных сокращений. Так, установлено, что растяжение миокарда одного из отделов сердца приводит к изменению силы сокращения миокарда другого его отдела, гемодинамически с ним разобщенного. Например, при растяжении миокарда правого предсердия наблюдается усиление работы левого желудочка. Этот эффект может быть результатом только рефлекторных внутрисердечных влияний.

Обширные связи сердца с различными отделами нервной системы создают условия для разнообразных рефлекторных воздействий на деятельность сердца, осуществляемых через вегетативную нервную систему.

В стенках сосудов располагаются многочисленные рецепторы, обладающие способностью возбуждаться при изменении величины кровяного давления и химического состава крови. Особенно много рецепторов имеется в области дуги аорты и каротидных синусов (небольшое расширение, выпячивание стенки сосуда на внутренней сонной артерии). Их еще называют сосудистые рефлексогенные зоны.

При уменьшении артериального давления происходит возбуждение этих рецепторов, и импульсы от них поступают в продолговатый мозг к ядрам блуждающих нервов. Под влиянием нервных импульсов снижается возбудимость нейронов ядер блуждающих нервов, что усиливает влияние симпатических нервов на сердце (об этой особенности я уже говорила выше). В результате влияния симпатических нервов ритм сердца и сила сердечных сокращений увеличиваются, сосуды суживаются, что является одной из причин нормализации артериального давления.

При увеличении артериального давления нервные импульсы, возникшие в рецепторах области дуги аорты и каротидных синусов, усиливают активность нейронов ядер блуждающих нервов. Обнаруживается влияние блуждающих нервов на сердце, замедляется ритм сердца, ослабляются сердечные сокращения, сосуды расширяются, что также является одной из причин восстановления исходного уровня артериального давления.

Таким образом, рефлекторные влияния на деятельность сердца, осуществляемые с рецепторов области дуги аорты и каротидных синусов, следует отнести к механизмам саморегуляции, проявляющимся в ответ на изменение величины артериального давления.

Возбуждение рецепторов внутренних органов, если оно достаточно сильное, может изменить деятельность сердца.

Естественно необходимо отметить влияние коры головного мозга на работу сердца. Влияние коры головного мозга на деятельность сердца. Кора головного мозга регулирует и корригирует деятельность сердца через блуждающие и симпатические нервы. Доказательством влияния коры головного мозга на деятельность сердца является возможность образования условных рефлексов. Условные рефлексы на сердце достаточно легко образуются у человека, а также у животных.

Можно привести пример опыта с собакой. У собаки образовывали условный рефлекс на сердце, используя в качестве условного сигнала вспышку света или звуковое раздражение. Безусловным раздражителем являлись фармакологические вещества (например, морфин), типично изменяющие деятельность сердца. Сдвиги в работе сердца контролировали путем регистрации ЭКГ. Оказалось, что после 20--30 инъекций морфина комплекс раздражения, связанных с введением этого препарата (вспышка света, лабораторная обстановка и т. д.), приводил к условно-рефлекторной брадикардии. Замедление ритма сердца наблюдалось и тогда, когда животному вместо морфина вводили изотонический раствор хлорида натрия.

У человека различные эмоциональные состояния (волнение, страх, гнев, злость, радость) сопровождаются соответствующими изменениями в деятельности сердца. Это также свидетельствует о влиянии коры головного мозга на работу сердца.

Гуморальная регуляция работы сердца

Факторы гуморальной регуляции делят на две группы:

1) вещества системного действия;

2) вещества местного действия.

К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca) оказывают выраженное влияние на работу сердца. При избытке Ca может произойти остановка сердца в момент систолы, так как нет полного расслабления. Ионы Na способны оказывать умеренное стимулирующее влияние на деятельность сердца. Ионы K в больших концентрациях оказывают тормозное влияние на работу сердца вследствие гиперполяризации.

Гормон адреналин увеличивает силу и частоту сердечных сокращений.

Тироксин (гормон щитовидной железы) усиливает работу сердца.

Минералокортикоиды (альдостерон) стимулируют реабсорбцию Na и выведение K из организма.

Глюкагон повышает уровень глюкозы в крови за счет расщепления гликогена, приводя к положительному инотропному эффекту.

Половые гормоны в отношении к деятельности сердца являются синергистами и усиливают работу сердца.

Вещества местного действия действуют там, где вырабатываются.

Сосудистый тонус в зависимости от происхождения может быть миогенным и нервным.

Миогенный тонус возникает, когда некоторые глад-комышечные клетки сосудов начинают спонтанно генерировать нервный импульс. Возникающее возбуждение распространяется на другие клетки, и происходит сокращение.

Нервный механизм возникает в гладкомышечных клетках сосудов под влиянием импульсов из ЦНС.

В настоящее время выделяют три механизма регуляции сосудистого тонуса - местный, нервный, гуморальный.

Ауторегуляция обеспечивает изменение тонуса под влиянием местного возбуждения. Этот механизм связан с расслаблением и проявляется расслаблением гладкомышечных клеток. Существует миогенная и метаболическая ауторегуляция.

Нервная регуляция осуществляется под влиянием вегетативной нервной системы, осуществляющей действие как вазоконстриктора, так и вазодилататора.

Сосудорасширяющие нервы могут быть различного происхождения:

1) парасимпатической природы;

2) симпатической природы;

3) аксон-рефлекс.

Гуморальная регуляция осуществляется за счет веществ местного и системного действия.

К веществам местного действия относятся ионы Ca, Na, Cu.

регуляция артериальный давление сердце

Регуляция деятельности сердечно-сосудистой системы

Работа ССС направлена на экономное распределение ограниченного запаса крови и снабжение кислородом и питательными веществами клеток тканей и органов, работающих в одно и то же время с разной интенсивностью. Регуляция кровоснабжения направлена на согласование работы сердца с определенным суммарным сопротивлением сосудов. Существуют определенные отношения между степенью наполнения кровью сердца, силой сокращения и частотой его работы.

В регуляции уровня АД принимают участие разные отделы мозга, но особенно велика роль продолговатого мозга. В нем находится сосудодвигательный центр, регулирующий сужение и расширение артериальных сосудов. Артерии и артериолы находятся постоянно под влиянием нервных импульсов этого центра, определяющих степень их сужения и расширения. В свою очередь его тонус зависит от импульсов, приходящих с рецепторов, которые находятся как в самой сосудистой системе, так и вне ее - в коже, селезенке, почках, легких и т.д.

Механизмы кратковременной регуляции АД

В регуляции работы ССС наиболее важны две группы рефлексов, которые поддерживают относительно постоянный уровень АД. Рецепторы, воспринимающие изменение Ад, называются барорецепторами (прессорецепторами). Важнейшими барорецепторами являются область дуги аорты и картидного синуса, расположенного в области разветвления общей сонной артерии. Афферентные волокна от барорецепторов каротидного синуса идут в составе ветви языкоглоточного нерва и от аорты в составе блуждающего нерва. По этим же волокнам черепно-мозговых нервов проходят афферентные волокна от хеморецепторов. Барорецепторы передают информацию не только о среднем Ад, но также об амплитуде колебаний и крутизне его нарастания, а следовательно, и о ритме сердечных сокращений. Участки, где расположены рецепторы, воспринимающие изменения АД, называются сосудистыми рефлексогенными зонами.

Рефлексогенные зоны первой группы рефлексов находятся в предсердиях, дуге аорты, сонных артериях. Повышение давления в них ведет к возбуждению барорецепторов. Импульсы от них по центростремительным нейронам достигают сосудодвигательного центра, от которого по центробежным нейронам нервные импульсы поступают к сосудам и сердцу. В результате урежения деятельности сердца и расширения сосудов наступает рефлекторное снижение артериального давления. Такая реакция имеет приспособительное значение, так как предотвращает повышение давления в сосудистой системе. С тех же рецептивных полей при понижении артериального давления возникает противоположный рефлекс, результатом которого является повышение артериального давления.

Рефлексогенные зоны второй группы рефлексов находятся в месте впадения полых вен в правое предсердие и в нем самом. Повышение давления вызывает усиление работы сердца, сужение сосудов и повышение артериального давления. Если бы сила сокращения сердца не увеличивалась, в легких мог бы возникнуть застой крови, что привело бы к резкому ухудшению газообмена.

Поддержание среднего уровня артериального давления очень важно для организма, так как при значительном понижении его нарушаются процессы нормального кровоснабжения мозга, сердца, почек и других органов, а при резком его повышении может наступить кровоизлияние в результате разрыва стенок сосудов.

Перечисленные механизмы регуляции артериального давления относятся к механизмам кратковременного действия, т.е. при быстрых колебаниях артериального давления.

Механизмы длительной регуляции артериального давления

Однако существуют механизмы и более длительного действия, чье влияние продолжается часы и многие дни. Конечно всегда их четко разграничить не удается, т.к. механизмы кратковременной регуляции плавно переходят в процессы длительной регуляции артериального давления. В процессах длительной регуляции принимают участие системы вазопрессина (антидиуретического гормона), альдостерона и почечного контроля за объемом крови. Эти системы тесно связаны между собой.

Рецепторы предсердий принимают участие в регуляции объема крови. Увеличение объема крови в них вызывает увеличение импульсации, и импульсы поступают в центры осморегуляции, которые находятся в гипоталамусе. В результате секретируется антидиуретический гормон. В случае увеличения объема крови количество выделяемого гормона уменьшается, и в связи с этим уменьшается обратное всасывание - реабсорбция в почках и количество выделяемой жидкости из организма увеличивается. А это снижает артериальное давление. Если же объем крови уменьшается, то процесс реабсорбции в почках уменьшается за счет увеличения выделения антидиуретического гормона. Поэтому уменьшается выделение жидкости почками.

При падении артериального давления увеличивается выделение ренина почками, который соединяется с ангиотензином (см. почки). В результате артериальное давление повышается. Действие ренин-ангиотензина продолжается в течении длительного времени.

Ангиотензин является главным стимулятором выработки альдостерона корой надпочечников. Под действием альдостерона увеличивается реабсорбция Ка+, а вследствие этого и воды. Это ведет к задержке воды в организме и значительному повышению артериального давления. Эффект действия альдостерона начинает проявляться спустя несколько часов и достигает максимума через несколько дней.

Следовательно, при кратковременных колебаниях давления и объема крови включаются сосудистые реакции, при длительных же сдвигах преобладают компенсаторные изменения объема крови. В последнем случае изменяется содержание в крови воды и электролитов.

Помимо нервной регуляции большое значение имеет изменение концентрации С02 и 02. При изменении химического состава крови происходит возбуждение хеморецепторов, находящихся в зоне разветвления сонной артерии. Это ведет к изменению артериального давления.

Центральная регуляция артериального давления

В регуляции деятельности сердечно-сосудистой системы принимают участие различные отделы центральной нервной системы.

На кровообращение влияют в наибольшей степени двигательные зоны коры как моторные, так и премоторные. Существенно влияние нижних поверхностей лобных и теменных долей. Оно может привести как к повышению, так и понижению артериального давления. Это было показано на следующих опытах. При раздражении двигательных зон коры, которые вызывают сокращения отдельных мышечных групп скелетной мускулатуры, происходит одновременное локальное увеличение кровотока в этих мышцах. Следовательно, кора головного мозга согласует сокращения мышц и их кровоснабжение. Влияния коры могут преобладать над противоположными реакциями сердца и артериального давления, обусловленными гомеостатическими безусловными рефлексами поддержа- ния артериального давления. От коры головного мозга импульсы поступают в гипоталамус, средний мозг. И далее от этих областей к стволовым центрам.

В регуляции гемодинамики принимает участие гипоталамус в связи с тем, что он является высшим центром вегетативной нервной системы. Его влияние осуществляется по эфферентным вегетативным волокнам. В промежуточном мозге происходит согласование двигательных и гемодинамических реакций при различных эмоциональных реакциях. Гипоталамус может оказывать на сердечно-сосудистую систему как тормозящее, так и возбуждающее влияние. Даже в условиях покоя гипоталамус оказывает постоянное влияние как на тоническую, так и на рефлекторную деятельность стволовых центров. В связи с тем, что гипоталамус является центром терморегуляции и поэтому регулирует теплообмен путем расширения и сужения сосудов кожи, он также принимает участие в регуляции деятельности сердечно-сосудистой системы при изменениях температуры тела.

В области ствола мозга, в ретикулярной формации продолговатого мозга и в мосте находятся сосудодвигательные стволовые центры. Они могут вызывать как прессорные реакции, ведущие к повышению артериального давления, так и депрессорные, ведущие к падению уровня артериального давления. На сосудодвигательные центры оказывают также влияние дыхательные центры и высшие отделы ЦНС. Регуляторные влияния этих стволовых центров осуществляются, главным образом, путем изменения тонуса симпатических нервов, тонус которых также зависит от афферентных импульсов от сердца и сосудов.

Список используемой литературы

1. Семенов Е.В. «Физиология и анатомия» Москва, 1997

Размещено на Allbest.ru

Подобные документы

    Понятие кровяного давления как гидравлической силы, с которой кровь воздействует на стенки сосудов. Определение давления крови, обуславливающие его величину факторы. График изменения артериального давления в различных отделах сердечно-сосудистой системы.

    презентация , добавлен 19.03.2015

    Сосудодвигательный центр продолговатого мозга. Основные рефлексогенные зоны сердечно-сосудистой системы. Классификация рефлексов на сердечно-сосудистую систему. Импульсация барорецепторов синокаротидной зоны. Депрессорный рефлекс: его анализ и компоненты.

    презентация , добавлен 12.01.2014

    Кривая артериального давления. Методы исследования артериального давления у человека: метод Короткова, осциллография. Возрастные нормы. Миогенный или базальный тонус. Опыт Клода Бернара. Механизм сосудодвигательных реакций и сосудистые рефлексы.

    презентация , добавлен 13.12.2013

    Влияние длительного и стойкого повышения артериального давления, вызванного нарушением работы сердца и регуляции тонуса сосудов, на самочувствие человека. Факторы риска, симптоматика и профилактика возможных осложнений гипертонической болезни сердца.

    презентация , добавлен 27.12.2013

    Роль сердца в кровоснабжении органов и тканей; принципы регуляции сердечного выброса. Конечно-диастолический объем желудочка (преднагрузка и постнагрузка). Инотропное состояние (сократимость миокарда). Иннервация и миогенная регуляция деятельности сердца.

    реферат , добавлен 29.03.2014

    Семиотика поражений сердечно-сосудистой системы, ее анатомо-физиологические особенности и запасная сила у детей. Семиотика боли в области сердца (кардиалгии), изменений артериального давления, нарушений сердечного ритма. Семиотика шумов и пороков сердца.

    курсовая работа , добавлен 12.12.2013

    Гемодинамические факторы, определяющие величину артериального давления. Уровни артериального давления. Физиологические механизмы регуляции артериального давления. Эссенциальная артериальная гипертензия. Симптоматические артериальные гипертензии.

    дипломная работа , добавлен 24.06.2011

    Общая характеристика строения и совершенствования проводящей системы сердца по мере роста ребенка. Рассмотрение особенностей нервной регуляции сердечно-сосудистой системы. Увеличение длины внутриорганных сосудов, их диаметра, количества анастомозов.

    презентация , добавлен 06.12.2015

    Общие сведения о коронарных артериях. Кровеносная сеть сердца. Его гуморальная регуляция. Изменение кровотока по коронарным артериям в связи с сердечным циклом. Обзор основных болезней сердца и сосудов. Действие различных веществ на коронарные артерии.

    презентация , добавлен 28.12.2013

    Общие сведения о заболеваниях сердечно-сосудистой системы. Основные синдромы, соответствующие основным жалобам. Недостаточность правых отделов сердца и обусловленный ею застой в органах системы. Регуляция болевой чувствительности. Стенокардия и одышка.

Различные факторы влияют на свойства сердечной мышцы (возбудимость, проводимость, сократимость, автоматизм, тонус) и, следовательно, на основные параметры деятельности сердца - частоту и силу сокращений.

Влияния на частоту сердечных сокращений называются хронотропными, на силу сокращений - инотропными, на возбудимость - батмотропными, на проводимость - дромотропными, на тонус сердечной мышцы - тонотропными влияниями. Влияния, вызывающие увеличение этих показателей называются положительными, а уменьшение - отрицательными.

Регуляция деятельности сердца. Принято различать несколько форм регуляции деятельности сердца: авторегуляцию (представленную двумя ее видами - миогенным и нейрогенным) и экстракардиальную регуляцию (нервную, гуморальную, рефлекторную).

Миогенная авторегуляция включает в себя гетерометрический и гомеометрический механизмы. Гетерометрический механизм опосредован внутриклеточными взаимодействиями и связан с изменением взаиморасположения актиновых и миозиновых нитей в миофибриллах кардиомиоцитов при растяжении миокарда кровью, поступающей в полости сердца. Растяжение миокардиоцитов приводит к увеличению количества миозиновых мостиков, способных соединить миозиновые и актиновые нити во время сокращения. Чем более растянут кардиомиоцит, тем на большую величину он может укоротиться при сокращении, и тем более сильным будет это сокращение. Этот вид регуляции был установлен на сердечно-легочном препарате и сформулирован в виде "закона сердца" или закона Франка-Старлинга. Согласно этому, закону, чем больше миокард растянут во время диастолы, тем больше сила последующего сокращения (систолы). Предсистолическое растяжение миокарда обеспечивается дополнительным объемом крови, нагнетаемым в желудочки во время систолы предсердии. При утомлении сердечной мышцы и длительной нагрузки (например, при гипертонии) этот закон проявляется только в том случае, если сердечная мышца растягивается значительно больше, чем обычно. Однако, величина минутного объема сердца и в этих состояниях длительное время удерживается на нормальном уровне. При дальнейшем нарастании утомления или нагрузки этот показатель уменьшается.

Гомеометрическая авторегуляция сердца связана с определенными межклеточными отношениями и не зависит от пред систолического его растяжения. Большую роль в гомеометрической регуляции играют вставочные диски - нексусы, через которые миокардиоциты обмениваются ионами и информауией. Реализуется данная форма регуляции в виде "эффекта Анрепа" - увеличение силы сердечного сокращения при возрастании сопротивления в магистральных сосудах.

Другим проявлением гомеометрической регуляции является так называемая ритмоинотропная зависимость: изменение силы сердечных сокращений при изменении частоты. Это явление обусловлено изменением длительности потенциала действия миокардиоцитов и, следовательно, изменением количества экстрацеллюлярного кальция, входящего в миокардиоцит при развитии возбуждения.

Нейрогенная авторегуляция сердца в своей основе имеет периферические внутрисердечные рефлексы. Рефлексогенные зоны (скопление рецепторов, с которых начинаются определенные рефлексы) сердца условно делятся на контролирующие "вход" (приток крови к сердцу), "выход" (отток крови от сердца) и кровоснабжение самой сердечной мышцы (расположены в устьях коронарных сосудов). При любом изменении параметров этих процессов возникают местные рефлексы, направленные на ликвидацию отклонений гемодинамики. Например, при увеличении венозного притока и увеличении давления в устьях полых вен и в правом предсердии возникает рефлекс Бейнбриджа заключающийся в увеличении частоты сокращений сердца.

Экстракардиальная регуляция. Гуморальная регуляция. Сердечная мышца обладает высокой чувствительностью к составу крови, протекающей через ее сосуды и полости сердца. К гуморальным факторам, которые оказывают влияние на функциональное состояние сердца, относятся:

Гормоны (адреналин, тироксин и др.);

Ионы (калия, кальция, натрия и др.);

Продукты метаболизма (молочная и угольная кислоты и др.);

Температура крови.

Адреналин оказывает на сердечную мышцу положительный хроно- и инотропный эффект. Его взаимодействие с бета-адренорецепторами кардиомиоцитов приводит к активации внутриклеточного фермента аденилатциклазы, которая ускоряет образование циклического АМФ, необходимого для превращения неактивной фосфарилазы в активную. Последняя обеспечивает снабжение миокарда энергией путем расщепления внутриклеточного гликогена с образованием глюкозы. Такое же влияние на сердце (и тем же путем) оказывает глюкагон.

Гормон щитовидной железы - тироксин - обладает ярко выраженным положительным хронотропным эффектом и повышает чувствительность сердца к симпатическим воздействиям.

Положительный инотропный эффект на сердце оказывают кортикостероиды, ангиотензин, серотонин.

Избыток ионов калия оказывает на сердечную деятельность отрицательный ино-, хроно-, батмо- и дромотропный эффекты. Повышение концентрации калия в наружной среде приводит к снижению величины потенциала покоя (вследствие уменьшения градиента концентрации калия), возбудимости, проводимости и длительности ПД.

При значительном увеличении концентрации калия сино-атриальный узел перестает функционировать как водитель ритма, и происходит остановка сердца в фазе диастолы. Снижение концентрации ионов калия приводит к повышению возбудимости центров автоматии, что может сопровождаться, прежде всего, нарушениями ритма сердечных сокращений.

Умеренный избыток ионов кальция в крови оказывает положительный инотропный эффект. Это связано с тем, что ионы кальция активируют фосфарилазу и обеспечивают сопряжение возбуждения и сокращения. При значительном избытке ионов кальция происходит остановка сердца в фазе систолы, т.к. кальциевый насос миокардиоцитов не успевает выкачивать избыток ионов кальция из межфибриллярного ретикулума и разобщение нитей актина, и миозина, следовательно, и расслабления не происходит.

Нервная регуляция. Нервные влияния на деятельность сердца осуществляются импульсами, которые поступают к нему по блуждающему и симпатическим нервам. Тела первых нейронов, образующих блуждающие нервы, расположены в продолговатом мозге. Их аксоны, образующие преганглионарные волокна, идут в интрамуральные ганглии, расположенные в стенке сердца. Здесь находятся вторые нейроны, аксоны которых образуют постганглионарные волокна и иннервируют сино-атриальный узел, мышечные волокна предсердий, атрио-вентрикулярный узел и начальную часть проводящей системы желудочков.

Первые нейроны, образующие симпатические нервы, иннервирующие сердце, расположены в боковых рогах пяти верхних грудных Сегментов спинного мозга. Их аксоны (преганглионарные волокна) заканчиваются в шейных и верхних грудных симпатических узлах, в которых находятся вторые нейроны, отростки которых (постганглионарные волокна) идут к сердцу. Большая их часть отходит от звездчатого ганглия. Симпатическая иннервация, в отличие от парасимпатической, более равномерно распределена по всем отделам сердца, включая миокард желудочков. Братьями Э. и Г. Вебер впервые было показано, что раздражение блуждающих нервов оказывает на деятельность сердца отрицатель-вый ино-, хроно-, батмо- и дромотропный эффекты. Микроэлектродные отведения потенциалов от мышечных волокон предсердий показали, что при сильном раздражении блуждающего нерва происходит увеличение мембранного потенциала (гиперполяризация), которое обусловлено повышением проницаемости мембраны для ионов калия, что препятствует развитию деполяризации. Гиперполяризация пейсмекерных клеток сино-атриального узла снижает их возбудимость, что приводит вначале к запаздыванию развития МДД в сино-атриальном узле, а затем и полному ее устранению, что приводит сначала к замедлению сердечного ритма, а затем к остановке сердца. Инотропный эффект связан с укорочением ПД миокарда предсердий и желудочков. Дромотропный - связан с уменьшением атрио-вентрикулярной проводимости.

Однако, слабое раздражение блуждающего нерва может вызывать симпатический эффект. Это объясняется тем, что в сердечном интрамуральном ганглии, кроме холинэргических эфферентных нейронов, находятся адренэргические, которые, обладая более высокой возбудимостью, формируют симпатические эффекты.

Вместе с тем, при одной и той же силе раздражения эффект блуждающего нерва может иногда сопровождаться противоположными реакциями. Это связано со степенью наполнения кровью полостей сердца и сердечных сосудов, т. е. с активностью собственного (внутрисердечного) рефлекторного аппарата. При значительном наполнении и переполнении сосудов и полостей сердца, раздражение блуждающего нерва сопровождается тормозными (отрицательными) реакциями, а при слабом наполнении сердца и, следовательно, слабом возбуждении механорецепторов внутрисердечной нервной сети - стимулирующими (положительными).

Исследованиями И.Ф. Циона впервые было показано, что раздражение симпатических нервов оказывает на сердечную деятельность положительные хроно-, ино-, батмо- и тромотропныи эффекты. Среди симпатических нервов, идущих к сердцу, И.П. Павлов обнаружил нервные веточки, раздражение которых вызывает только положительный инотропный эффект. Они были названы усиливающим нервом сердца, который действует на сердце путем стимуляции в нем обмена веществ, т.е. трофики.

Раздражение симпатических нервов вызывает:

Повышение проницаемости мембраны для ионов кальция, что приводит к повышению степени сопряжения возбуждения и сокращения миокарда;

Ускорение спонтанной деполяризации клеток водителей ритма сердца, что приводит к учащению сердечных сокращений;

Ускорение проведения возбуждения в атрио-вентрикулярном узле, что уменьшает интервал между возбуждением предсердий и желудочков.

Удлинение ПД и увеличение его амплитуды, в результате чего больше экзогенного кальция поступает в саркоплазму и сила мышечного сокращения возрастает.

При раздражении ваго-симпатического ствола раньше наступает парасимпатический эффект, а затем - симпатический. Это связано с тем, что постганглионарные волокна блуждающего нерва (от интрамуральных ганглиев) очень короткие и обладают достаточно высокой скоростью проведения возбуждения. У симпатического нерва постганглионарные волокна длинные, скорость проведения возбуждения меньше, поэтому эффект от его раздражения запаздывает. Однако, действие блуждающего нерва кратковременное, т. к. его медиатор - ацетилхолин - быстро разрушается ферментом холинэстеразой. Медиатор симпатических волокон - норадреналин - разрушается значительно медленнее, чем ацетилхолин, и он действует дольше, поэтому после прекращения раздражения симпатических нервов некоторое время сохраняется учащение и усиление сердечной деятельности.

Из сравнения влияний симпатического и парасимпатического нервов на деятельность сердца видно, что они являются нервами-антагонистами, т, е. оказывают противоположные эффекты. Однако, при определенных условиях раздражения парасимпатического нерва можно получить симпатикоподобный эффект, а симпатического - вагусный. В условиях деятельности целостного организма можно говорить только об их относительном антагонизме, так как они совместно обеспечивают наилучшее, адекватное функционирование сердца в различных функциональных системах. Следовательно, их влияния не антагонистические, а скорее содружественные, т. е. они функционируют как нервы-синергисты.

Рефлекторные влияния на деятельность сердца могут возникать при раздражении различных интеро- и экстерорецепторов. Но особое значение в изменении деятельности сердца имеют рефлексы, возникающие с рецепторов, расположенных в сосудистой системе, получивших название сосудистых рефлексогенных зон. Они расположены в дуге аорты, в каротидном синусе (область разветвления общей сонной артерии) и в других участках сосудистой системы. В этих рефлексогенных зонах находится множество механо, баро-, хеморецеторов, которые реагируют на различные изменения гемодинамики и состав крови.

Рефлекторные влияния с механорецепторов каротидного синуса и дуги аорты особенно важны при повышении кровяного давления. Последнее приводит к возбуждению этих рецепторов и, как следствие, повышению тонуса блуждающего нерва, в результате чего возникает торможение деятельности сердца (отрицательный хроно- и инотропный эффекты). При этом сердце меньше перекачивает крови из венозной системы в артериальную и давление в аорте и крупных сосудах снижается.

Интенсивное раздражение интерорецепторов может рефлекторно привести к изменению деятельности сердца, вызывая либо учащение и усиление, либо ослабление и урежение сердечных сокращений. Так, например, раздражение рецепторов, брюшины (поколачивание пинцетом но животу лягушки) может привести к урежению сердечной деятельности и даже к его остановке (рефлекс Гольца). У человека кратковременная остановка сердечной деятельности также может наступить при ударе в область живота. При этом афферентные импульсы по чревным нервам достигают спинного мозга, а затем ядер блуждающих нервов, от которых по эфферентным волокнам вагуса импульсы направляются к сердцу, вызывая его остановку. К вагусным рефлексам относится и глазо-сердечный рефлекс (рефлекс Данини-Ашнера) - урежение сердечной деятельности при легком надавливании на глазные яблоки.

Корковая регуляция деятельности сердца . Изменение сердечной деятельности могут вызвать различные эмоции или упоминание о факторах, их вызывающих, что свидетельствует об участии коры больших полушарий мозга в регуляции деятельности сердца.

Наиболее убедительные данные о наличии корковой регуляции сердечной деятельности получены методом условных рефлексов. Условно-рефлекторные реакции лежат в основе предстартовых состояний спортсменов, сопровождающихся такими же изменениями деятельности сердца, как и во время соревнований.

Кора больших полушарий головного мозга обеспечивает приспособительные реакции организма не только к настоящим, но и к будущим событиям. Условно-рефлекторные сигналы, предвещающие наступление этих событий, могут вызвать изменения сердечной деятельности и всей сердечно-сосудистой системы в той мере, в какой это необходимо, чтобы обеспечить предстоящую деятельность организма.

Именно этот орган является незаменимым и важным для человеческого организма. Именно при его полноценной работе происходит обеспечение постоянной и полноценной деятельности всех органов, систем, клеток. Сердце подает к ним питательные вещества и кислород, гарантирует очистку организма от веществ, образующихся в результате обмена веществ.

В некоторых ситуациях нарушается регуляция работы сердца. Рассмотрим вопросы, связанные с осуществлением деятельности главного органа человеческого организма.

Особенности функционирования

Как осуществляется регуляция работы сердца и кровеносных сосудов? Данный орган является сложным насосом. В его составе есть четыре различных отдела, называемых камерами. Два именуют левым и правым предсердиями, а два называют желудочками. Сверху располагаются довольно тонкостенные предсердия, основная масса сердца распределена на мышечные желудочки.

Регуляция работы сердца связана с перекачиванием крови при ритмичных сокращениях и расслаблениями мышц этого органа. Время сокращения называют систолами, промежуток, соответствующий расслаблениям, называют диастолами.

Кровообращение

Сначала осуществляется сокращение предсердий в систолу, потом функционируют предсердия. Венозная кровь собирается по организму, поступает в правое предсердие. Здесь жидкость выталкивается, проходит в правый желудочек. Участок будет нагнетать кровь, направляя ее в Именно так именуют сосудистую сеть, пронизывающую легкие. На данном этапе происходит газообмен. Кислород воздуха поступает в кровь, насыщает ее, из крови выделяется углекислый газ. Обогащенная кислородом кровь направляется к левому предсердию, затем она поступает внутрь левого желудочка. Именно эта часть сердца является самой сильной и крупной. В ее обязанности входит выталкивание крови через аорту в большой круг кровообращения. Она поступает по организму, выводя из него углекислый газ.

Особенности функционирования сосудов и сердца

Регуляция работы сердца и сосудов связана с электрической системой. Именно она обеспечивает ритмичное биение сердца, его периодичное сокращение, расслабление. Поверхность этого органа покрыта многочисленными волокнами, способными генерировать, передавать разные электрические импульсы.

Сигналы зарождаются внутри синусового узла, называемого «водителем ритма». Данный участок находится на поверхности правого основного предсердия. Вырабатываясь в нем, сигнал проходит через предсердия, являясь причиной сокращений. Затем импульс подразделяется на желудочки, создавая ритмичное сокращение волокон мышц.

Колебания сокращений сердечной мышцы составляют у взрослого человека диапазон от шестидесяти до восьмидесяти сокращений за минуту. Именно их и называют сердечным импульсом. Для фиксации активности электрической системы сердца периодически проводят электрокардиограммы. С помощью таких исследований можно увидеть формирование импульса, а также его передвижение по сердцу, выявить нарушения в подобных процессах.

Нервно-гуморальная регуляция работы сердца связана с внешними и внутренними факторами. Например, учащенные сердцебиения наблюдаются при серьезном эмоциональном напряжении. В процессе работы происходит регулировка гормона адреналина. Именно он способен увеличивать частоту сердечных сокращений. работы сердца позволяет выявлять различные проблемы с нормальным сердцебиением, своевременно их устранять.

Нарушения в работе

Медицинские работники под такими сбоями подразумевают разнообразные нарушения полноценного сокращения ритма сердца. Подобные проблемы могут быть вызваны разнообразными факторами. Например, регуляция работы сердца происходит при электролитических и эндокринных недугах, вегетативных заболеваниях. Кроме того, проблемы появляются и при интоксикации некоторыми медикаментами.

Распространенные виды нарушений

Нервная регуляция работы сердца связана с сокращениями мышцы. Синусная тахикардия вызывает учащения сокращений сердца. Кроме того, возможны такие ситуации, при которых количество сокращений сердца уменьшается. Такое заболевание в медицине называют синусовой брадикардией. Среди опасных нарушений, связанных с деятельностью сердца, отметим параксизамальную тахикардию. При ее наличии происходит внезапный рост количества биений сердца до ста в минуту. Пациента необходимо поместить в горизонтальном положение, срочно вызвать врача.

Регуляция работы сердца связана с мерцательной аритмией, экстрасистолией. Любые нарушения в нормальном сердечном ритме должны стать сигналом для обращения к кардиологу.

Автоматика функционирования

В состоянии покоя сердечная мышца сокращается за одни сутки примерно сто тысяч раз. Оно за этот временной промежуток перекачивает порядка десяти тонн крови. Сократительная обеспечивается сердечной мышцей. Она относится к поперечнополосатой мышце, то есть имеет специфическое строение. В ней присутствуют определенные клетки, в которых появляется возбуждение, оно передается на стенки мышц желудочков и предсердий. Сокращения отделов сердца происходят поэтапно. Сначала осуществляется сокращение предсердий, потом желудочков.

Автоматией называют способность сердца сокращаться ритмично под воздействием импульсов. Именно эта функция гарантирует независимость между нервной системой и функционированием сердца.

Цикличность работы

Зная, что среднее количество сокращений в минуту составляет 75 раз, можно вычислить продолжительность одного сокращения. В среднем оно длится около 0,8 секунды. Полный цикл состоит из трех фаз:

  • в течение 0,1 секунды осуществляется сокращение обоих предсердий;
  • 0,3 секунды длится сокращение левого и правого желудочков;
  • около 0,4 секунды идет общее расслабление.

Расслабление желудочков происходит примерно за 0,4 секунды, для предсердий такой временной промежуток составляет 0,7 секунды. Этого времени вполне достаточно для того, чтобы в полной мере восстановить работоспособность мышцы.

Факторы, влияющие на работу сердца

Сила и частота сердечных сокращений связаны с внешней и внутренней средой человеческого организма. При резком увеличении количества сокращений наблюдается выработка сосудистой системой огромного количества крови за единицу времени. При уменьшении силы и частоты сердцебиений снижается выброс крови. В обоих случаях возникает изменение снабжения кровью человеческого организма, что негативно отражается на его состоянии.

Регулировка работы сердца осуществляется рефлекторно, в ней участвует автономная нервная система. Импульсы, которые приходят к сердцу по парасимпатическим нервным клеткам, будут замедлять, ослаблять сокращения. Усиление и учащение сердцебиений обеспечивается симпатическими нервами.

Гуморальная работа «человеческого мотора» связана с функционированием биологически активных веществ и ферментов. К примеру, адреналин (гормон надпочечников), соединения кальция способствуют учащению и усилению сердечных сокращений.

Соли калия, напротив, способствуют снижению числа сокращений. Для приспособления сердечно-сосудистой системы к внешним условиям применяют гуморальные факторы и функционирование нервной системы.

Во время выполнения физической работы наблюдается поступление импульсов от рецепторов сухожилий и мышц в центральную нервную систему, регулирующую работу сердца. В итоге наблюдается усиление притока к сердцу импульсов по симпатическим нервам, в кровь выбрасывается адреналин. Из-за роста числа сердечных сокращений организм нуждается в дополнительном количестве питательных веществ и кислороде.

Различные факторы влияют на свойства сердечной мышцы (возбудимость, проводимость, сократимость, автоматизм, тонус) и, следовательно, на основные параметры деятельности сердца - частоту и силу сокращений.

Влияния на частоту сердечных сокращений называются хронотропными, на силу сокращений -инотропными, на возбудимость -батмотропными, на проводимость -дромотропными, на тонус сердечной мышцы -тонотропными влияниями. Влияния, вызывающие увеличение этих показателей называются положительными, а уменьшение - отрицательными.

Регуляция деятельности сердца. Принято различать несколько форм регуляции деятельности сердца: авторегуляцию (представленную двумя ее видами - миогенным и нейрогенным) и экстракардиальную регуляцию (нервную, гуморальную, рефлекторную).

Миогенная авторегуляция включает в себя гетерометрический и гомеометрический механизмы.Гетерометрический механизм опосредован внутриклеточными взаимодействиями и связан с изменением взаиморасположения актиновых и миозиновых нитей в миофибриллах кардиомиоцитов при растяжении миокарда кровью, поступающей в полости сердца. Растяжение миокардиоцитов приводит к увеличению количества миозиновых мостиков, способных соединить миозиновые и актиновые нити во время сокращения. Чем более растянут кардиомиоцит, тем на большую величину он может укоротиться при сокращении, и тем более сильным будет это сокращение. Этот вид регуляции был установлен на сердечно-легочном препарате и сформулирован в виде "закона сердца" илизакона Франка-Старлинга. Согласно этому, закону, чем больше миокард растянут во время диастолы, тем больше сила последующего сокращения (систолы). Предсистолическое растяжение миокарда обеспечивается дополнительным объемом крови, нагнетаемым в желудочки во время систолы предсердии. При утомлении сердечной мышцы и длительной нагрузки (например, при гипертонии) этот закон проявляется только в том случае, если сердечная мышца растягивается значительно больше, чем обычно. Однако, величина минутного объема сердца и в этих состояниях длительное время удерживается на нормальном уровне. При дальнейшем нарастании утомления или нагрузки этот показатель уменьшается.

Гомеометрическая авторегуляция сердца связана с определенными межклеточными отношениями и не зависит от пред систолического его растяжения. Большую роль в гомеометрической регуляции играют вставочные диски - нексусы, через которые миокардиоциты обмениваются ионами и информауией. Реализуется данная форма регуляции в виде "эффекта Анрепа" - увеличение силы сердечного сокращения при возрастании сопротивления в магистральных сосудах.

Другим проявлением гомеометрической регуляции является так называемая ритмоинотропная зависимость: изменение силы сердечных сокращений при изменении частоты. Это явление обусловлено изменением длительности потенциала действия миокардиоцитов и, следовательно, изменением количества экстрацеллюлярного кальция, входящего в миокардиоцит при развитии возбуждения.

Нейрогенная авторегуляция сердца в своей основе имеет периферические внутрисердечные рефлексы. Рефлексогенные зоны (скопление рецепторов, с которых начинаются определенные рефлексы) сердца условно делятся на контролирующие "вход" (приток крови к сердцу), "выход" (отток крови от сердца) и кровоснабжение самой сердечной мышцы (расположены в устьях коронарных сосудов). При любом изменении параметров этих процессов возникают местные рефлексы, направленные на ликвидацию отклонений гемодинамики. Например, при увеличении венозного притока и увеличении давления в устьях полых вен и в правом предсердии возникает рефлекс Бейнбриджа заключающийся в увеличении частоты сокращений сердца.

Экстракардиальная регуляция. Гуморальная регуляция. Сердечная мышца обладает высокой чувствительностью к составу крови, протекающей через ее сосуды и полости сердца. К гуморальным факторам, которые оказывают влияние на функциональное состояние сердца, относятся:

Гормоны (адреналин, тироксин и др.);

Ионы (калия, кальция, натрия и др.);

Продукты метаболизма (молочная и угольная кислоты и др.);

Температура крови.

Адреналин оказывает на сердечную мышцу положительный хроно- и инотропный эффект. Его взаимодействие с бета-адренорецепторами кардиомиоцитов приводит к активации внутриклеточного фермента аденилатциклазы, которая ускоряет образование циклического АМФ, необходимого для превращения неактивной фосфарилазы в активную. Последняя обеспечивает снабжение миокарда энергией путем расщепления внутриклеточного гликогена с образованием глюкозы. Такое же влияние на сердце (и тем же путем) оказываетглюкагон.

Гормон щитовидной железы - тироксин - обладает ярко выраженным положительным хронотропным эффектом и повышает чувствительность сердца к симпатическим воздействиям.

Положительный инотропный эффект на сердце оказывают кортикостероиды, ангиотензин, серотонин.

Избыток ионов калия оказывает на сердечную деятельность отрицательный ино-, хроно-, батмо- и дромотропный эффекты. Повышение концентрации калия в наружной среде приводит к снижению величины потенциала покоя (вследствие уменьшения градиента концентрации калия), возбудимости, проводимости и длительности ПД.

При значительном увеличении концентрации калия сино-атриальный узел перестает функционировать как водитель ритма, и происходит остановка сердца в фазе диастолы. Снижение концентрации ионов калия приводит к повышению возбудимости центров автоматии, что может сопровождаться, прежде всего, нарушениями ритма сердечных сокращений.

Умеренный избыток ионов кальция в крови оказывает положительный инотропный эффект. Это связано с тем, что ионы кальция активируют фосфарилазу и обеспечивают сопряжение возбуждения и сокращения. При значительном избытке ионов кальция происходит остановка сердца в фазе систолы, т.к. кальциевый насос миокардиоцитов не успевает выкачивать избыток ионов кальция из межфибриллярного ретикулума и разобщение нитей актина, и миозина, следовательно, и расслабления не происходит.

Нервная регуляция. Нервные влияния на деятельность сердца осуществляются импульсами, которые поступают к нему по блуждающему и симпатическим нервам. Тела первых нейронов, образующих блуждающие нервы, расположены в продолговатом мозге. Их аксоны, образующие преганглионарные волокна, идут в интрамуральные ганглии, расположенные в стенке сердца. Здесь находятся вторые нейроны, аксоны которых образуют постганглионарные волокна и иннервируют сино-атриальный узел, мышечные волокна предсердий, атрио-вентрикулярный узел и начальную часть проводящей системы желудочков.

Первые нейроны, образующие симпатические нервы, иннервирующие сердце, расположены в боковых рогах пяти верхних грудных Сегментов спинного мозга. Их аксоны (преганглионарные волокна) заканчиваются в шейных и верхних грудных симпатических узлах, в которых находятся вторые нейроны, отростки которых (постганглионарные волокна) идут к сердцу. Большая их часть отходит от звездчатого ганглия. Симпатическая иннервация, в отличие от парасимпатической, более равномерно распределена по всем отделам сердца, включая миокард желудочков. Братьями Э. и Г. Вебер впервые было показано, что раздражение блуждающих нервов оказывает на деятельность сердца отрицатель-вый ино-, хроно-, батмо- и дромотропный эффекты. Микроэлектродные отведения потенциалов от мышечных волокон предсердий показали, что при сильном раздражении блуждающего нерва происходит увеличение мембранного потенциала (гиперполяризация), которое обусловлено повышением проницаемости мембраны для ионов калия, что препятствует развитию деполяризации. Гиперполяризация пейсмекерных клеток сино-атриального узла снижает их возбудимость, что приводит вначале к запаздыванию развития МДД в сино-атриальном узле, а затем и полному ее устранению, что приводит сначала к замедлению сердечного ритма, а затем к остановке сердца. Инотропный эффект связан с укорочением ПД миокарда предсердий и желудочков. Дромотропный - связан с уменьшением атрио-вентрикулярной проводимости.

Однако, слабое раздражение блуждающего нерва может вызывать симпатический эффект. Это объясняется тем, что в сердечном интрамуральном ганглии, кроме холинэргических эфферентных нейронов, находятся адренэргические, которые, обладая более высокой возбудимостью, формируют симпатические эффекты.

Вместе с тем, при одной и той же силе раздражения эффект блуждающего нерва может иногда сопровождаться противоположными реакциями. Это связано со степенью наполнения кровью полостей сердца и сердечных сосудов, т. е. с активностью собственного (внутрисердечного) рефлекторного аппарата. При значительном наполнении и переполнении сосудов и полостей сердца, раздражение блуждающего нерва сопровождается тормозными (отрицательными) реакциями, а при слабом наполнении сердца и, следовательно, слабом возбуждении механорецепторов внутрисердечной нервной сети - стимулирующими (положительными).

Исследованиями И.Ф. Циона впервые было показано, что раздражение симпатических нервов оказывает на сердечную деятельность положительные хроно-, ино-, батмо- и тромотропныи эффекты. Среди симпатических нервов, идущих к сердцу, И.П. Павлов обнаружил нервные веточки, раздражение которых вызывает только положительный инотропный эффект. Они были названы усиливающим нервом сердца, который действует на сердце путем стимуляции в нем обмена веществ, т.е. трофики.

Раздражение симпатических нервов вызывает:

Повышение проницаемости мембраны для ионов кальция, что приводит к повышению степени сопряжения возбуждения и сокращения миокарда;

Ускорение спонтанной деполяризации клеток водителей ритма сердца, что приводит к учащению сердечных сокращений;

Ускорение проведения возбуждения в атрио-вентрикулярном узле, что уменьшает интервал между возбуждением предсердий и желудочков.

Удлинение ПД и увеличение его амплитуды, в результате чего больше экзогенного кальция поступает в саркоплазму и сила мышечного сокращения возрастает.

При раздражении ваго-симпатического ствола раньше наступает парасимпатический эффект, а затем - симпатический. Это связано с тем, что постганглионарные волокна блуждающего нерва (от интрамуральных ганглиев) очень короткие и обладают достаточно высокой скоростью проведения возбуждения. У симпатического нерва постганглионарные волокна длинные, скорость проведения возбуждения меньше, поэтому эффект от его раздражения запаздывает. Однако, действие блуждающего нерва кратковременное, т. к. его медиатор - ацетилхолин - быстро разрушается ферментом холинэстеразой. Медиатор симпатических волокон - норадреналин - разрушается значительно медленнее, чем ацетилхолин, и он действует дольше, поэтому после прекращения раздражения симпатических нервов некоторое время сохраняется учащение и усиление сердечной деятельности.

Из сравнения влияний симпатического и парасимпатического нервов на деятельность сердца видно, что они являются нервами-антагонистами, т, е. оказывают противоположные эффекты. Однако, при определенных условиях раздражения парасимпатического нерва можно получить симпатикоподобный эффект, а симпатического - вагусный. В условиях деятельности целостного организма можно говорить только об их относительном антагонизме, так как они совместно обеспечивают наилучшее, адекватное функционирование сердца в различных функциональных системах. Следовательно, их влияния не антагонистические, а скорее содружественные, т. е. они функционируют как нервы-синергисты.

Рефлекторные влияния на деятельность сердца могут возникать при раздражении различных интеро- и экстерорецепторов. Но особое значение в изменении деятельности сердца имеют рефлексы, возникающие с рецепторов, расположенных в сосудистой системе, получивших название сосудистых рефлексогенных зон. Они расположены в дуге аорты, в каротидном синусе (область разветвления общей сонной артерии) и в других участках сосудистой системы. В этих рефлексогенных зонах находится множество механо, баро-, хеморецеторов, которые реагируют на различные изменения гемодинамики и состав крови.

Рефлекторные влияния с механорецепторов каротидного синуса и дуги аорты особенно важны при повышении кровяного давления. Последнее приводит к возбуждению этих рецепторов и, как следствие, повышению тонуса блуждающего нерва, в результате чего возникает торможение деятельности сердца (отрицательный хроно- и инотропный эффекты). При этом сердце меньше перекачивает крови из венозной системы в артериальную и давление в аорте и крупных сосудах снижается.

Интенсивное раздражение интерорецепторов может рефлекторно привести к изменению деятельности сердца, вызывая либо учащение и усиление, либо ослабление и урежение сердечных сокращений. Так, например, раздражение рецепторов, брюшины (поколачивание пинцетом но животу лягушки) может привести к урежению сердечной деятельности и даже к его остановке (рефлекс Гольца). У человека кратковременная остановка сердечной деятельности также может наступить при ударе в область живота. При этом афферентные импульсы по чревным нервам достигают спинного мозга, а затем ядер блуждающих нервов, от которых по эфферентным волокнам вагуса импульсы направляются к сердцу, вызывая его остановку. К вагусным рефлексам относится и глазо-сердечный рефлекс (рефлекс Данини-Ашнера) - урежение сердечной деятельности при легком надавливании на глазные яблоки.

Корковая регуляция деятельности сердца . Изменение сердечной деятельности могут вызвать различные эмоции или упоминание о факторах, их вызывающих, что свидетельствует об участии коры больших полушарий мозга в регуляции деятельности сердца.

Наиболее убедительные данные о наличии корковой регуляции сердечной деятельности получены методом условных рефлексов. Условно-рефлекторные реакции лежат в основе предстартовых состояний спортсменов, сопровождающихся такими же изменениями деятельности сердца, как и во время соревнований.

Кора больших полушарий головного мозга обеспечивает приспособительные реакции организма не только к настоящим, но и к будущим событиям. Условно-рефлекторные сигналы, предвещающие наступление этих событий, могут вызвать изменения сердечной деятельности и всей сердечно-сосудистой системы в той мере, в какой это необходимо, чтобы обеспечить предстоящую деятельность организма.



© dagexpo.ru, 2024
Стоматологический сайт